Appendix 1

Neath Port Talbot County Borough Council 2017 Air Quality Progress Report

In fulfillment of Part IV of the Environment Act 1995 Local Air Quality Management

Date (July, 2017)

Local Authority Officer	M. Hooper			
Department	Environment			
Address	Quays, Brunel Way, Neath SA11 2GG			
Telephone	01639 686517			
E-mail	m.hooper@npt.gov.uk			
Report Reference number	E2/16/9/2017 PR			
Date	July 2017			

Executive Summary

The long-term Air Quality Objectives for nitrogen dioxide were not breached at any locations in Neath Port Talbot. Decreasing concentrations of NO_2 measured by the continuous analyser at Pontardawe were enough to justify removal of the analyser from this location. This decrease in NO_2 levels is probably directly related to the closure of the Post Office some time ago.

Continuous measurements of NO₂ at Victoria Gardens also show a decreasing trend, but there are currently no plans to stop monitoring there.

Neither the long-term nor the short-term Air Quality Objectives for PM_{10} were breached in Port Talbot. However, the Taibach/Margam AQMA will continue to remain in force.

There were no exceedances of Air Quality Objectives for sulphur dioxide (SO₂), lead (Pb) or carbon monoxide (CO).

Fine particulates of less than 2.5 microns in size ($PM_{2.5}$) easily complied with the EU Target which is to be complied with by 2015.

Ozone is not covered by Local Air Quality Management because trans-boundary pollution can have a significant effect upon local results. Neath Port Talbot, like other parts of the country, experiences significant numbers of exceedances of the UK air quality standard. The trend is one of gradual improvement over time.

Concentrations of polyaromatic hydrocarbons exceed the UK Air Quality Objective of 0.25 ng/m³, but are now only marginally less than the EU Target value of 1 ng/m³. It is likely that the EU Target will be exceeded if the current rate of increase continues. Natural Resources Wales, which regulates the steel works, has been informed.

Arsenic and cadmium easily comply with the EU Target, both in Port Talbot and Pontardawe.

Nickel concentrations comply with the EU Target at all locations in Neath, Port Talbot and Pontardawe, with the exception of Tawe Terrace and Pontardawe Leisure Centre. Nickel levels at Tawe Terrace went back up to levels previously encountered in 2014.

The highest rates of fallout of large particles (nuisance dust) were measured in Port Talbot at Port Talbot Fire Station and Prince Street. However, the fallout rates at both sites were down by approximately 30% on the previous year.

The next actions to be taken will be to:

• Submit an Updating and Screening Assessment report.

Table of Contents

Ex	ecuti	ve Summary	i
1	Intr	oduction	1
	1.1	Description of Local Authority Area	1
	1.2	Purpose of Progress Report	2
	1.3	Air Quality Objectives	2
	1.4	Summary of Previous Review and Assessments	4
2	Nev	v Monitoring Data	9
	2.1	Summary of Monitoring Undertaken	9
	2.2	Comparison of Monitoring Results with Air Quality Objectives	27
	2.3	Other Pollutants Monitored	51
3	Nev	v Local Developments	97
	3.1	Road Traffic Sources	
	3.2	Other Transport Sources	97
	3.3	Industrial Sources	97
	3.4	Commercial and Domestic Sources	97
	3.5	New Developments with Fugitive or Uncontrolled Sources	97
4	Loc	al / Regional Air Quality Strategy	98
5	Pla	nning Applications	99
6	Air	Quality Planning Policies	100
7	Loc	al Transport Plans and Strategies	104
8	Imp	lementation of Action Plans	105
9	Cor	nclusions and Proposed Actions	110
	9.1	Conclusions from New Monitoring Data	110
	9.2	Conclusions relating to New Local Developments	110
	9.3	Other Conclusions	110
	9.4	Proposed Actions	111

List of Tables

Table 1.1 - Air Quality Objectives included in Regulations for the purpose of LAQM in Wales	3
Table 1.2 - Summary of previous air quality reports	6
Table 2.1 – Details of Automatic Monitoring Sites	13
Table 2.2 – Details of Non- Automatic Monitoring Sites	21
Table 2.3 – Results of Automatic Monitoring for NO ₂ : Comparison with Annual Mean Objective	28
Table 2.4 – Results of Automatic Monitoring for NO ₂ : Comparison with 1-hour Mean Objective	30
Table 2.5 – Results of NO_2 Diffusion Tubes 2015	32
Table 2.6 – Results of NO_2 Diffusion Tubes (2011 to 2015)	38
Table 2.7 – Results of Automatic Monitoring for PM ₁₀ : Comparison with Annual Mean Objective	42
Table 2.8 – Results of Automatic Monitoring for PM_{10} : Comparison with 24-hour Mean Objective	
Table 2.9 - Results of Non-Automatic Monitoring for PM ₁₀ : Comparison with Annual Mean Object	
Table 2.9 - Results of Non-Automatic Monitoring for PM ₁₀ : Comparison with Annual Mean Object	
Table 2.10 – Results of Automatic Monitoring for SO ₂ : Comparison with Objectives	50
Table 2.11 - Results of Automatic Monitoring of carbon monoxide	51
Table 2.13 – Annual ozone exceedances 2000 – 2016	53
Table 2.13 - Benzo[a]pyrene annual averages 1999-2015	54
Table 2.14 - Annual average metal concentrations during 2015	59
Table 2.15 - Fallout categories as defined by NPT	63
Table 2.16 - Sites ranked by average fallout level (mg/m ² /day) 2015	93
Table 2.17 - Long term deposition rates	95
Table 9.1 - Action Plan Progress	106
List of Figures	
Figure 1.1 Taibach Margam AOMA	4

	-
Figure 2.1 Map of Automatic PM ₁₀ Monitoring Sites	10
Figure 2.2 Map of Automatic NO ₂ Monitoring Sites	11
Figure 2.3 NO ₂ analyser at Cimla Road/Victoria Gardens in Neath	12
Figure 2.4 –NO ₂ diffusion tube Sites	15
Figure 2.5 - Location of NO ₂ diffusion tubes near Port Talbot	16
Figure 2.6 Location of NO ₂ diffusion tubes in Briton Ferry	17
Figure 2.7 - Location of NO_2 diffusion tubes in Neath	18
Figure 2.8 - Location of NO ₂ diffusion tubes in Neath	20
Figure 2.9 – Trends in Annual Mean NO ₂ Concentrations Measured at Automatic Monitoring Sit	es 29
Figure 2.10 - Trends in Annual Mean Nitrogen Dioxide Concentrations Measured at Diffusion T	ube
Monitoring Sites	40
Figure 2.11 – Trends in Annual Mean PM ₁₀ Concentrations	43
Figure 2.12 – Trends in PM ₁₀ exceedance days	45
Figure 2.13 Trends in PM ₁₀ exceedances of the daily averaged Air Quality Objective at Port Tal	bot
AURN	48
Figure 2.14 - Days of ozone exceedances of the UK recommended AQO since 2000	53
Figure 2.16 - Nickel levels in Swansea Valley 1972 – 2014	60
Figure 2.17 Location of nickel monitoring stations in the Swansea Valley	61
Figure 2.18 Deposit gauge locations	67
Figure 2.19 Cil Carne Farm pie charts	68
Figure 2.20 Cil Carne Farm fallout rates	69
Figure 2.21 Prince Street pie charts	70
Figure 2.22 Prince Street fallout rates	71
Figure 2.23 Port Talbot Fire Station pie charts	72
Figure 2.24 Port Talbot Fire Station fallout rates	73
Figure 2.25 Eglwys Nunydd Resevoir pie charts	74
Figure 2.26 Eglwys Nunydd fallout rates	75
Figure 2.27 Gwaen Cae Gurwen pie charts	76
Figure 2.28 Gwaen Cae Gurwen fallout rates	77
Figure 2.29 Tairgwaith pie charts	78
Figure 2.30 Tairgwaith fallout rates	79
Figure 2.31 Cwmgwrach pie charts	80
Figure 2.32 Cwmgwrach fallout rates	81
Figure 2.33 Glynneath pie charts	82
Figure 2.34 Glynneath fallout rates	83
Figure 2.35 Onllwyn pie charts	84
Figure 2.36 Onllwyn fallout rates	85

Figure 2.37 Little Warren pie charts	86
Figure 2.38 Little Warren fallout rates	87
Figure 2.39 Dyffryn School pie charts	88
Figure 2.40 Dyffryn School fallout rates	89
Figure 2.41 Cwmllynfell pie charts	90
Figure 2.42 Cwmllynfell fallout rates	91
Figure 2.43 Comparison of average fallout rates, 2012	92
Figure 2.44 Long term deposition rates	94
Figure A1 Port Talbot Fire Station - Bias adjustment spreadsheet -	112
Figure A1 Cimla Road - Bias adjustment spreadsheet -	113

Appendices

Appendix A: QA/QC Data	112
Appendix B: Raw NO2 Data	115

1 Introduction

1.1 Description of Local Authority Area

The County Borough of Neath Port Talbot covers an area of 44,126 hectares. Rising from sea level in the west to 600 metres at Craig Y Llyn, above Glynneath, Neath Port Talbot is predominantly an upland area dissected by the valleys of the Afan, Neath, Dulais and Tawe rivers which all flow to the sea in Swansea Bay. These valleys are separated from each other by ridges of high forest or moorland. A narrow coastal strip extends around Swansea Bay where the main centres of population are found. The surrounding valleys are rural in aspect with scattered communities. The County Borough has a population of 139,800 (2011 Census) and contains 63,978 dwellings (2011 Census). While over recent decades the overall population trend has been of gradual decline, population figures since the 2001 Census indicate population increases which have been predominantly fuelled by internal migration from other areas of the UK and neighbouring local authorities. The main demographic challenges to the County Borough are an aging population where it is projected that the population aged over 65 years old will increase by 35% by 2023, long term ill health, low levels of economic activity and access to private transport.

The County Borough is served by the M4 motorway with the A465 "Heads of the Valleys" road providing links to the M50 and the Midlands. The Intercity Rail service includes mainline stations in Neath and Port Talbot. The area has a strong manufacturing base with more than twice the UK average employed in the manufacturing sector.

The steel industry remains by far the largest industrial employer in the County Borough with around 3,000 employed directly at the Port Talbot works although contraction in the labour force has affected employment, contractors and suppliers.

Coal mining is still important in the valley communities where small mines, opencast sites and coal processing/washeries provide valuable local jobs.

1.2 Purpose of Progress Report

This report fulfils the requirements of the Local Air Quality Management (LAQM) process as set out in Part IV of the Environment Act (1995), the Air Quality Strategy for England, Scotland, Wales and Northern Ireland 2007 and the relevant Policy and Technical Guidance documents. The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where exceedances are considered likely, the local authority must then declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives.

For Local Authorities in Wales, Progress Reports are required in the intervening years between the three-yearly Updating and Screening Assessment reports. Their purpose is to maintain continuity in the LAQM process.

They are not intended to be as detailed as Updating and Screening Assessment Reports, or to require as much effort. However, if the Progress Report identifies the risk of exceedance of an Air Quality Objective, the Local Authority (LA) should undertake a Detailed Assessment immediately, and not wait until the next round of Review and Assessment.

1.3 Air Quality Objectives

The air quality objectives applicable to LAQM **in Wales** are set out in the Air Quality (Wales) Regulations 2000, No. 1940 (Wales 138), Air Quality (Amendment) (Wales) Regulations 2002, No 3182 (Wales 298), and are shown in Table 1.1. This table shows the objectives in units of micrograms per cubic metre μ g/m³ (milligrams per cubic metre, mg/m³ for carbon monoxide) with the number of exceedances in each year that are permitted (where applicable).

Table 1.1 – Air Quality Objectives included in Regulations for the purpose of	
LAQM in Wales	

Pollutant	Air Quality	Objective	Date to be		
Fonutant	Concentration	achieved by			
Benzene	16.25 µg/m³	Running annual mean	31.12.2003		
	5.00 µg/m ³	Annual mean	31.12.2011		
1,3-butadiene	2.25 µg/m ³	Running annual mean	31.12.2003		
Carbon monoxide	10 mg/m ³	Running 8-hour mean	31.12.2003		
Lead	0.50 µg/m ³	Annual mean	31.12.2004		
Lead	0.25 µg/m ³	Annual mean	31.12.2008		
Nitrogen dioxide	200 µg/m ³ not to be exceeded more than 18 times a year	1-hour mean	31.12.2005		
	40 µg/m ³	Annual mean	31.12.2005		
Particulate matter (PM ₁₀) (gravimetric)	50 μg/m ³ , not to be exceeded more than 35 times a year	24-hour mean	31.12.2004		
(3)	40 µg/m³	Annual mean	31.12.2004		
	350 μg/m ³ , not to be exceeded more than 24 times a year	1-hour mean	31.12.2004		
Sulphur dioxide	125 μg/m ³ , not to be exceeded more than 3 times a year	24-hour mean	31.12.2004		
	266 μg/m ³ , not to be exceeded more than 35 times a year	15-minute mean	31.12.2005		

1.4 Summary of Previous Review and Assessments

The 2000 review and assessment of air quality concluded that it would be necessary to declare an Air Quality Management Area for PM_{10} in Port Talbot. This was due to the predicted failure to achieve the Government's Air Quality Objective for PM_{10} by the deadline of 31st December 2004 without intervention.

As a consequence, the Taibach Margam AQMA was declared by the Council on 11th May 2000 and was in force effective from 1st July 2000. The AQMA is shown shaded in Figure 1.1 below.

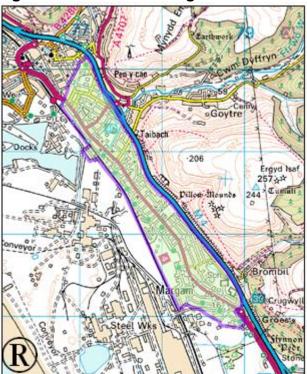


Figure 1.1 Taibach Margam AQMA

0.05.1 0.2 Mik

The 2003 Updating and Screening Assessment showed that there was no need to proceed to a detailed assessment in respect of all but two pollutants, nitrogen dioxide and PM_{10} . Nitrogen dioxide measurements at Victoria Gardens, Neath, had shown some increases that merited further investigation. PM_{10} measurements at Port Talbot had continued to require further measurement, especially as improvements to a blast furnace might have been expected to abate emissions somewhat.

The subsequent 2004 Detailed Assessment of nitrogen dioxide and PM_{10} showed that it would not be necessary to declare an AQMA in the vicinity of Victoria Gardens. PM_{10} concentrations were found to increase following re-commissioning of blast furnace number 5 at the steelworks. However, the numbers of exceedances were not as numerous as those recorded prior to the re-build of the furnace and the incorporation of cast house fume arrestment.

The 2006 USA showed that it would be necessary to proceed to a Detailed Assessment in respect of nitrogen dioxide. Several busy roads were identified for which accurate speed information was not available. Therefore it would necessary to deploy diffusion tubes in order to assess nitrogen dioxide levels at these locations. Measurements of PM_{10} would continue as before.

In 2007 the Detailed Assessment of nitrogen dioxide showed that none of the 19 roadside sites identified in the 2006 USA breached the annual average Air Quality Objective. However, two sites were close to the Objective and one site, Water Street, Port Talbot was at risk of exceeding. Diffusion tube monitoring continued at these locations.

The 2008 air quality report revealed compliance with PM₁₀ Air Quality Objectives, both at Port Talbot Fire Station and the new site at Dyffryn School, Port Talbot. There were no breaches of Air Quality Objectives for the other LAQM pollutants, although one site at Victoria Gardens, Neath came close to doing so.

An Updating and Screening Assessment was reported in May 2009, which identified the need to proceed to a Detailed Assessment of nitrogen dioxide in respect of Water Street, Port Talbot. Further sites were also identified for deployment of nitrogen dioxide diffusion tubes. The daily averaged Air Quality Objective for PM_{10} was not exceeded in Port Talbot.

A Detailed Assessment of nitrogen dioxide was reported in 2010. This showed that Air Quality Objectives were not breached at Water Street, but recommended that a further Detailed Assessment should be conducted at this location.

An Air Quality Progress Report was produced in 2010, which identified the need to proceed to a Detailed Assessment of nitrogen dioxide in respect of sites at: Swansea Road, Pontardawe; Victoria Gardens, Neath and Water Street, Port Talbot.

A Detailed Assessment of nitrogen dioxide was reported in 2011. This showed that following improved traffic management and reducing volumes of traffic meant that there were no further problems at Water Street, but confirmed raised levels at Swansea Road, Pontardawe and Victoria Gardens, Neath. The Council committed to deploy continuous NO_2 analysers at these locations.

An Updating and Screening Assessment was reported in August 2012. This identified the need to proceed to a Detailed Assessment of nitrogen dioxide at Swansea Road, Pontardawe and Victoria Gardens, Neath. The report also identified the need to proceed to a Detailed Assessment for PM₁₀ at respect of Prince Street, Margam.

An Air Quality Progress Report was produced in 2013, which identified a breach of the short term air quality objective for PM_{10} at Prince Street in Port Talbot using equipment owned by Natural Resources Wales (NRW). A new monitor was to be installed in 2014 to replace the NRW device, which was relocated. Consequently, the report identified the need to proceed to a Detailed Assessment for PM_{10} at respect of Prince Street, Margam.

A Detailed Assessment of nitrogen dioxide was reported in 2013. This showed that the air quality objective was not breached at Victoria Gardens in Neath. However, a

property at 1 Victoria Gardens (39.8 µg/m3) was close to exceeding the short term Air Quality Objective (AQO).

An Updating and Screening Assessment was reported in 2015. This identified the need to proceed to a Detailed Assessment of nitrogen dioxide at Swansea Road, Pontardawe and Victoria Gardens, Neath.

A Detailed Assessment of PM_{10} was reported in 2015. This examined data from 8 sites in Port Talbot, but none were found to breach air quality objectives. Results at Prince Street were more in line with those at Port Talbot Fire Station.

An Updating and Screening Assessment was reported in 2016. This identified the need to proceed to a Detailed Assessment of nitrogen dioxide at Victoria Gardens, Neath.

A Detailed Assessment of NO_2 was reported in 2016. This recommended the deployment of diffusion tubes in triplicate at 1, Victoria Gardens, using circular clips. In this way monitoring could be conducted at the location of greatest relevant exposure whilst minimising health and safety risks.

Report	Date produced	Outcomes
Annual air quality report	1998	Summary of routine measurements.
Annual air quality report	1999	Summary of routine measurements.
Annual air quality report	2000	Summary of routine measurements.
2000 Review and assessment of air quality	February 2000	AQMA for PM ₁₀ required for Port Talbot.
Annual air quality report	2001	Summary of routine measurements.
Annual air quality report	2002	Summary of routine measurements.
Updating and Screening Assessment of Air Quality	July 2003	Detailed assessment required for NO_2 and PM_{10} .
Annual air quality report	2003	Summary of routine measurements.
Annual air quality report	2004	Summary of routine measurements.
Detailed Assessment of air quality	November 2004	No AQMA required in respect of NO ₂ at Victoria Gardens. PM ₁₀ problems at Port Talbot improved, but not enough to warrant revocation of AQMA.
Annual air quality report	2005	Summary of routine measurements.

Table 1.2Summary of previous air quality reports

Updating and Screening Assessment	April 2006	Detailed Assessment required in respect of NO ₂ at several busy roads.
Annual air quality report	2006	Summary of routine measurements.
Detailed Assessment	April 2007	No AQMAs required for NO ₂ , but monitoring to continue at sites "at risk" of exceedance.
Annual air quality report	2007	Summary of routine measurements.
Annual air quality report	2008	Summary of routine measurements.
Updating and Screening Assessment	May 2009	Detailed Assessment required in respect of NO ₂ at Water Street, Port Talbot.
Detailed Assessment of air quality	2010	No AQMA required but another Detailed Assessment recommended for Water Street.
Progress report	2010	Detailed Assessment recommended for 2 sites in Pontardawe and Neath.
Detailed Assessment of air quality	2011	Water Street issue now resolved, but continuous analysers to be deployed at 2 sites in Pontardawe and Neath.
Updating and screening assessment	2012	Detailed Assessment for NO ₂ recommended for 2 sites in Pontardawe & Neath. Detailed Assessment for PM ₁₀ recommended for Prince Street in Port Talbot.
Progress report	Aug 2014	Detailed Assessment of PM ₁₀ at Prince Street in Port Talbot is recommended. New PM ₁₀ monitor required at this site.
Detailed Assessment of air quality	Aug 2014	No breach of short term AQO for NO ₂ at Victoria Gardens, but one property is very close to exceeding.
Updating and Screening Assessment	Nov 2015	Detailed assessment recommended for Victoria Gardens site in Neath.
Detailed Assessment of air quality	Nov 2015	Detailed Assessment of PM ₁₀ at 8 sites in Port Talbot. No breaches of air quality objectives.
Updating and Screening Assessment	July 2016	Detailed assessment recommended for Victoria

		Gardens site in Neath.
Detailed Assessment of air quality	July 2016	Deploy NO ₂ diffusion tubes at
		1 Victoria Gardens, Neath.

2 New Monitoring Data

2.1 Summary of Monitoring Undertaken

2.1.1 Automatic Monitoring Sites

Measurements of carbon monoxide (CO), fine particulates (PM₁₀), sulphur dioxide (SO₂) and nitrogen dioxide (NO₂) are made continuously at Port Talbot Fire Station as part of the Automatic Urban and Rural Network (AURN). The site location is shown in Figure 2.1. Measurements are made either every 15 minutes or every hour depending on the pollutant concerned. The National Environmental Technology Centre (NETCEN) and their contractors (Bureau Veritas) collect the data from the Fire Station site and this is then subjected to a rigorous quality assurance procedure, prior to dissemination via the Internet. The site is initially contacted via modem and the data collected at regular intervals. Data is automatically scaled in accordance with the latest calibrations (where appropriate) and subjected to an initial inspection prior to dissemination within one hour of receipt. Subsequently, data remains in this format until a final ratification is carried out, by NETCEN, normally in three-month blocks. Some care should therefore be exercised when relying upon statistics not yet subject to final ratification. All data for 2016 has now been fully ratified and can therefore be reported with confidence.

Nitrogen dioxide is continuously measured at the junction of Victoria Gardens and Cimla Road in Neath. The site at Pontardawe Post Office was discontinued in July 2016 because NO₂ levels had decreased significantly. The analyser is MCERTS certified and is subject to QA/QC audits and data ratification by Ricardo under a contract that also ensures that data is disseminated via the Welsh Air Quality Forum website. The instruments are covered by service contracts.

There are a total of eight PM_{10} analysers deployed in or near to the AQMA by the Council. All are Rupprecht & Patashnick TEOM FDMS units with type CB driers. Analysers owned by Neath Port Talbot Council are all covered by service contracts and QA/QC contracts with Richardo-AEA. Calibrations of gas analysers are carried out on an approximately fortnightly basis by the Council and Ricardo carry out biannual site audits at all locations.

Data polled by Ricardo can be found on the Welsh Air Quality Forum website.

http://www.welshairquality.co.uk/

Figures 2.1 to 2.4 show the locations of the monitors.

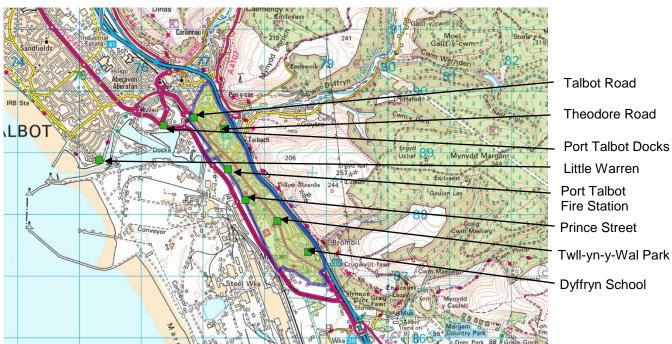


Figure 2.1 Map of Automatic PM₁₀ Monitoring Sites

Note: the blue line denotes the border of the AQMA.

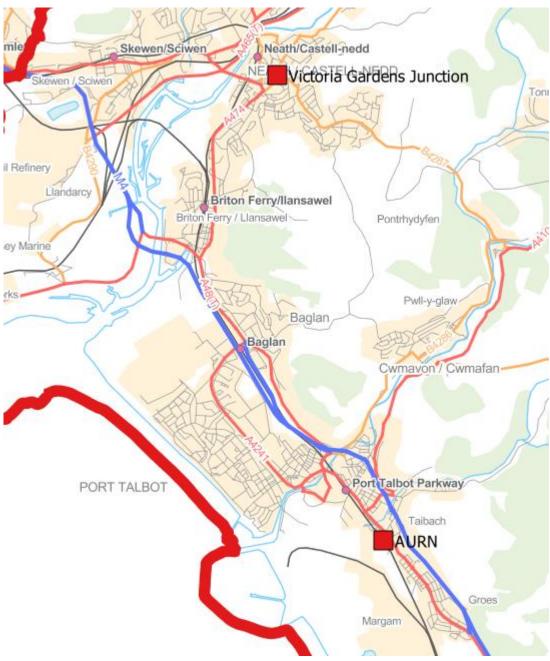


Figure 2.2 Map of Automatic NO₂ Monitoring Sites

Figure 2.3 NO₂ analyser at Cimla Road/Victoria Gardens in Neath

Table 2.1 – Details of Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Inlet Height (m)	Pollutants Monitored	In AQMA?	Monitoring Technique	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
PT2	Port Talbot Fire Station	Industrial	277388	188733	2.5	PM ₁₀ , PM _{2.5,} SO ₂ , CO, O ₃ , NO ₂	Y	FDMS, UV fluorescence, IR absorption, UV absorption, chemiluminescence	Y (16)	8	Y
DS1	Dyffryn School	Industrial	278700	187387	1.8	PM ₁₀	Y	FDMS	Y (88)	75	Ν
TW1	Twll-yn-y Wal Park	Industrial	278196	187891	1.8	PM ₁₀	Y	FDMS	Y (14)	2	N
TH1	Theodore Road	Industrial	277328	189385	1.8	PM ₁₀	Y	FDMS	Y (5)	6	N
TR1	Talbot Road	Roadside	276833	189567	1.8	PM ₁₀	Y	FDMS	N	2	N
LW1	Port Talbot Little Warren	Industrial	275313	188879	2.5	PM ₁₀	N	FDMS	N	160	Ν
DK1	Port Talbot Docks	Industrial	276346	189446	2.5	PM ₁₀	Y	FDMS	N	2	Ν
PS2	Prince St.	Industrial	277689	188235	1.8	PM ₁₀ , PM _{2.5}	Y	FDMS	Y (40)	47	Y
VG2	Victoria Gardens	Roadside	275471	197183	1.2	NO ₂	N	Chemiluminescence	Y (21)	1	Y

2.1.2 Non-Automatic Monitoring Sites

Lead is measured at Milland Road Car Park in Neath, Port Talbot Fire Station, Pontardawe Leisure Centre, Tawe Terrace and Brecon Road in Pontardawe. Pumps sample the ambient air and filters are exposed for a fixed period of time. The filters are despatched to the laboratory together with information about the exposure time, flow rate etc. This information, combined with an analysis of the filters allows a concentration to be calculated for lead over the exposure period for the filters.

Measurements at Port Talbot Fire Station, Tawe Terrace & Brecon Road are carried out as part of the UK Metals Network and are subject to the quality assurance procedures of this network. The Council employs the National Physical Laboratory (NPL) to analyse and report results for filters exposed at Pontardawe Leisure Centre. The sampler is subject to a service contract to ensure it is correctly maintained.

 PM_{10} is also measured at Port Talbot Fire Station using a Partisol, which is quality assured by Bureau Veritas.

Nitrogen dioxide is also measured at a variety of locations using passive diffusion tubes (Figs. 2.5 - 2.9). The tubes are exposed for one month and are provided and analysed by ESG Didcot. The tubes are prepared using acetone:triethanolamine (50:50) and are subject to intercomparison quality assurance tests as part of the Workplace Analysis Scheme for Proficiency (WASP).

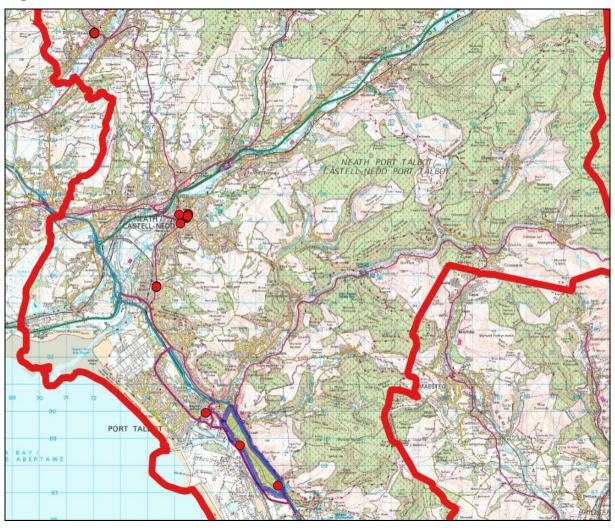


Figure 2.4 – NO₂ diffusion tube Sites

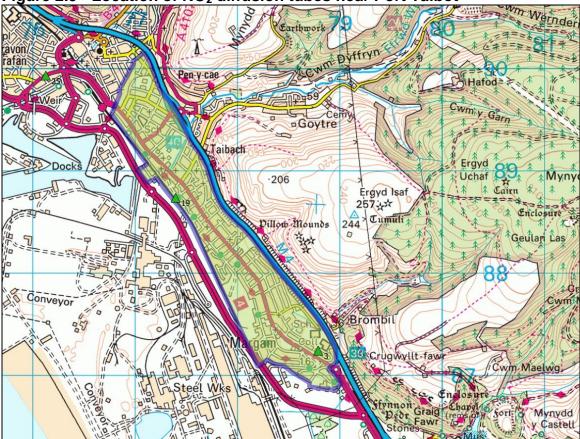


Figure 2.5 - Location of NO₂ diffusion tubes near Port Talbot

The Port Talbot AQMA is shaded green.

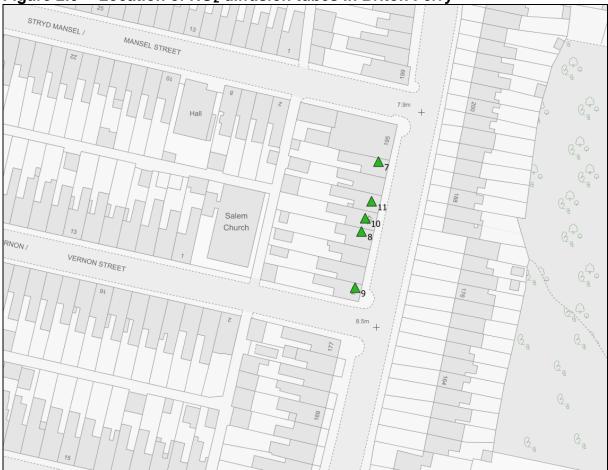
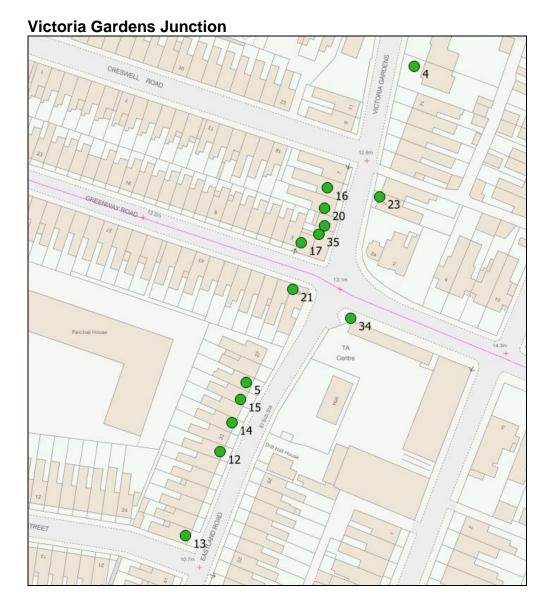
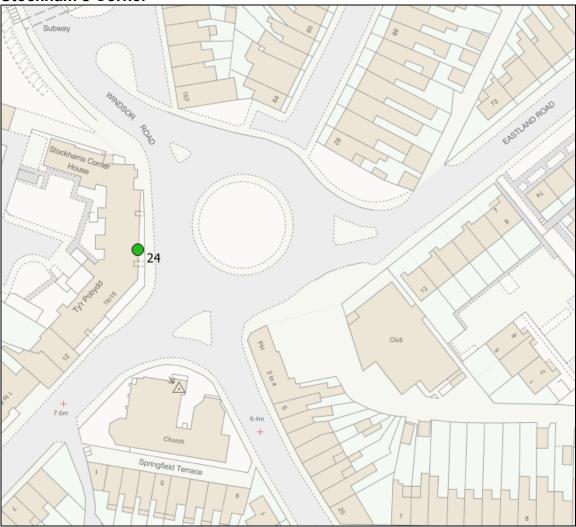



Figure 2.6 Location of NO₂ diffusion tubes in Briton Ferry


Figure 2.7 -Location of NO₂ diffusion tubes in Neath

LAQM Progress Report 2016

Windsor Road

Stockham's Corner

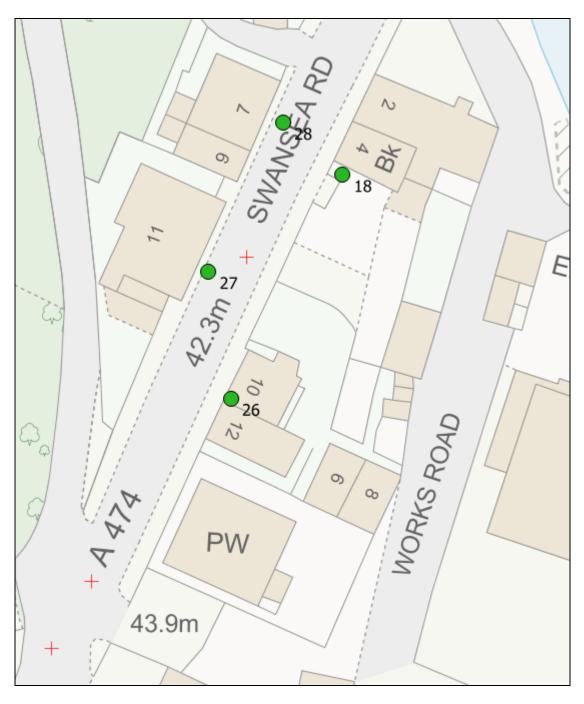


Figure 2.8 - Location of NO₂ diffusion tubes in Pontardawe

Table 2.2 – Details of Non- Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
1	1 Victoria Gardens, Neath	Roadside	275463	197217	2.0	NO ₂	Ν	Ν	Y(0m)	1m	Y
3	11 College Green, Margam, Port Talbot	Urban background	278794	187237	1.5	NO ₂	Y	Ν	Y (2m)	1m	Ν
4	8 Victoria Gardens, Neath	Roadside	275494	197272	1.5	NO ₂	Ν	Ν	Y (2m)	4.5 m	N
5	28 Eastland Road, Neath	Roadside	275420	197161	1.5	NO ₂	Ν	Ν	Y (0m)	4 m	N
7	Moby's, Neath Road, Briton Ferry	Roadside	274312	194601	2.0	NO ₂	Ν	N	Y (2m)	1.5 m	Y

	Neath Port Talbot County Borough Council										
Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
	185 Neath										
8	Road,	Roadside	274307	194580	2.0	NO ₂	Ν	Ν	Y (0m)	1.5 m	Y
	Briton Ferry										
	179 Neath										
9	Road,	Roadside	274305	194563	2.0	NO ₂	Ν	Ν	Y (0m)	1.5 m	Y
	Briton Ferry										
	187 Neath										
10	Road,	Roadside	274308	194584	2.0	NO ₂	Ν	Ν	Y (0m)	1.5 m	Y
	Briton Ferry										
	189 Neath										
11	Road,	Roadside	274310	194589	2.0	NO ₂	Ν	Ν	Y (0m)	1.5 m	Y
	Briton Ferry										
	34 Eastland										
12	Road,	Roadside	275427	197139	1.5	NO ₂	Ν	Ν	Y (0m)	4 m	Ν
	Neath										

				1	r	1		Neath Port T	albot County	Borough Co	ouncil
Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
13	40 Eastland Road, Neath	Roadside	275415	197110	1.5	NO ₂	Ν	Ν	Y (0m)	4 m	Ν
14	32 Eastland Road, Neath	Roadside	275431	197149	1.5	NO ₂	Ν	Ν	Y (0m)	4 m	Ν
15	30 Eastland Road, Neath	Roadside	275434	197157	1.5	NO ₂	Ν	Ν	Y (0m)	4 m	N
16	5 Victoria Gardens, Neath	Roadside	275464	197230	1.5	NO ₂	Ν	Ν	Y (0m)	3.5 m	Y
17	1 Greenway Road, Neath	Roadside	275455	197211	2.0	NO ₂	Ν	Ν	Y (0m)	1 m	Y

				1	r	1		Neath Port T		Borough Co	ouncil
Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
18	Pontardawe Post Office	Roadside	272034	203954	2.0	NO ₂	Ν	Ν	Y (0m)	1m	Y
19	Port Talbot Fire Station	Industrial	277399	188734	2.5	NO ₂	Y	Y	Y (16m)	8 m	N
20	3 Victoria Gardens, Neath	Roadside	275463	197223	1.5	NO ₂	Ν	Ν	Y (0m)	3.5 m	Y
21	50 Greenway Road, Neath	Roadside	275452	197195	2.0	NO ₂	Ν	Ν	Y (0m)	1 m	Y
22	54 Windsor Road, Neath	Roadside	275146	197248	2.0	NO ₂	Ν	Ν	Y (0m)	1.5 m	Y

		Neath Port Talbot County Borough Council									
Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
	4 Victoria										
23	Gardens,	Roadside	275482	197227	1.5	NO ₂	Ν	Ν	Y (0m)	3.5 m	Y
	Neath										
	Stockham's										
24	Corner	Roadside	275200	196905	2.0	NO ₂	Ν	Ν	Y (0m)	3 m	Y
	Flats										
	Old Fire										
	Station,										
25	Water	Roadside	276131	189926	2.0	NO ₂	Ν	Ν	Y (3m)	1 m	Y
	Street, Port										
	Talbot										
	10										
26	Swansea	Roadside	272019	203924	2.0	NO ₂	N	Ν	Y (0m)	1 m	Y
20	Road,	RUAUSIUE	212019	203924	2.0		IN	IN			I
	Pontardawe										

								Neath Port T	albot County	Borough Co	ouncil
Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
27	11a Swansea Road, Pontardawe	Roadside	272016	203941	2.0	NO ₂	Ν	Ν	Y (0m)	1 m	Y
28	8 Swansea Road, Pontardawe	Roadside	272026	203961	2.0	NO ₂	Ν	Ν	Y (0m)	1 m	Y
34	Lights at Cimla Junction	Roadside	275472	197185	1.4	NO ₂	Ν	Y	Y (20m)	1.5 m	Ν

2.2 Comparison of Monitoring Results with Air Quality Objectives

2.2.1 Nitrogen Dioxide (NO₂)

Automatic Monitoring Data

Table 2.3 summarises the results from automatic monitors compared to the annual mean objective. No site exceeded the annual air quality objective of 40 μ g/m3. Diffusion tubes were co-located at these two continuous analysers in order to provide a local bias adjustment factor for diffusion tubes in the County Borough.

			Valid Data	Valid Data	Annual Mean Concentration (µg/m ³)						
Site ID	Site Type	Within AQMA?	Capture for Monitoring Period % ^a	Capture 2016 % ^b	2012* ^c	2013* ^c	2014* ^c	2015* ^c	2016 ^c		
PT2	Industrial	Y	98	98	18	17	17	17	21		
VG2	Roadside	N	99	99	51	42	42	40	37		

Table 2.3 – Results of Automatic Monitoring for NO₂: Comparison with Annual Mean Objective

In bold, exceedance of the NO₂ annual mean AQS objective of 40µg/m³

^a i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" as in Boxes 7.9 and 7.10 of LAQM.TG16, if valid data capture is less than 75%

* Annual mean concentrations for previous years are optional

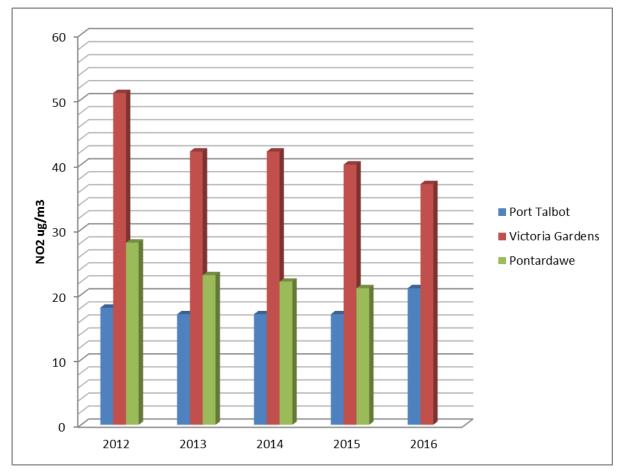


Figure 2.9 – Trends in Annual Mean NO₂ Concentrations Measured at Automatic Monitoring Sites

Nitrogen dioxide levels increased a little at Margam Fire Station in 2016 following very little change over the previous four years. NO2 concentrations at Pontardawe were on a decreasing trend to the extent that the continuous analyser could be removed. NO₂ levels at Victoria Gardens have also been on a decreasing trend over the last five years and are now below the annual mean air quality objective..

Table 2.4 shows that none of the continuous sites breached the 1 hour air quality objective.

			Valid Data	Valid Data	Number of Hourly Means > 200µg/m ³						
Site ID	Site Type	Within AQMA?	Capture for Monitoring Period % ^a	Capture 2016 % ^b	2012* ^c	2013* ^c	2014* ^c	2015* ^c	2016 ^c		
PT2	Industrial	Y	94	94	0	0	0	0	0		
VG2	Roadside	Ν	99	99	0 (142)	0	0	0	0		

Table 2.4 – Results of Automatic Monitoring for NO₂: Comparison with 1-hour Mean Objective

In **bold**, exceedance of the NO₂ hourly mean AQS objective (200µg/m³ – not to be exceeded more than 18 times per year)

^a i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c If the data capture for full calendar year is less than 90%, include the 99.8th percentile of hourly means in brackets

* Number of exceedances for previous years is optional

Diffusion Tube Monitoring Data

Results are shown in table 2.5 below. A local bias adjustment factor of 0.71 was derived from diffusion tubes co-located with the two continuous analysers at Port Talbot Fire Station and Victoria Gardens.

Table 2.5 – Results of NO2 Diffusion Tubes 2015

Site ID	Location	Site Type	Within AQMA?	Triplicate or Co- located Tube	Full Calendar Year Data Capture 2016 (Number of Months or %) ^a	2016 Annual Mean Concentration (μg/m ³) - Bias Adjustment factor = 0.71 ^b
1	1 Victoria Gardens, Neath	Roadside	Ν	Triplicate	10	35.5
3	11 College Green, Margam, Port Talbot	Urban background	Y	N	9	14.0
4	8 Victoria Gardens, Neath	Roadside	Ν	N	11	26.9
5	28 Eastland Road, Neath	Roadside	Ν	N	11	28.3
7	Moby's, Neath Road, Briton Ferry	Roadside	Ν	Triplicate	10	27.6
8	185 Neath Road, Briton Ferry	Roadside	Ν	N	10	27.5

Site ID	Location	Site Type	Within AQMA?	Triplicate or Co- located Tube	Full Calendar Year Data Capture 2016 (Number of Months or %) ^a	2016 Annual Mean Concentration (μg/m ³) - Bias Adjustment factor = 0.71 ^b
0	179 Neath	Doodoido	N			
9	Road, Briton Ferry	Roadside	IN	N	10	26.3
	187 Neath					
10	Road, Briton	Roadside	Ν	N	10	26.1
	Ferry					
	189 Neath					
11	Road, Briton	Roadside	Ν	N	11	27.3
	Ferry					
	34 Eastland					
12	Road,	Roadside	Ν	N	11	26.1
	Neath					
	40 Eastland					
13	Road,	Roadside	Ν	N	11	27.9
	Neath					
	32 Eastland					
14	Road,	Roadside	Ν	N	9	29.6
	Neath					

Site ID	Location	Site Type	Within AQMA?	Triplicate or Co- located Tube	Full Calendar Year Data Capture 2016 (Number of Months or %) ^a	2016 Annual Mean Concentration (μg/m ³) - Bias Adjustment factor = 0.71 ^b
45	30 Eastland	Deedeide	NI			
15	Road, Neath	Roadside	N	N	10	29.4
16	5 Victoria Gardens,	Roadside	N	N	11	28.2
	Neath					20.2
	1 Greenway					
17	Road, Neath	Roadside	N	N	10	36.8
18	Pontardawe Post Office	Roadside	Ν	Triplicate	11	33.9
19	Port Talbot Fire Station	Industrial	Y	Triplicate and Co-located	11	16.8
20	3 Victoria Gardens, Neath	Roadside	N	Triplicate	11	31.8

Site ID	Location	Site Type	Within AQMA?	Triplicate or Co- located Tube	Full Calendar Year Data Capture 2016 (Number of Months or %) ^a	2016 Annual Mean Concentration (μg/m ³) - Bias Adjustment factor = 0.71 ^b
21	50 Greenway Road, Neath	Roadside	Ν	N	10	33
22	54 Windsor Road, Neath	Roadside	Ν	N	11	22.6
23	4 Victoria Gardens, Neath	Roadside	Ν	N	11	29.6
24	Stockham's Corner Flats	Roadside	Ν	triplicate	11	27.9
25	Old Fire Station, Water Street, Port Talbot	Roadside	Ν	N	10	26.8

Site ID	Location	Site Type	Within AQMA?	Triplicate or Co- located Tube	Full Calendar Year Data Capture 2016 (Number of Months or %) ^a	2016 Annual Mean Concentration (μg/m ³) - Bias Adjustment factor = 0.71 ^b
26	10 Swansea Road, Pontardawe	Roadside	Ν	N	11	30.9
27	11a Swansea Road, Pontardawe	Roadside	Ν	N	9	36.6
28	8 Swansea Road, Pontardawe	Roadside	Ν	N	11	26.1
34	Lights at Cimla Junction	Roadside	Ν	Triplicate and Co-located	11	40.3

In **bold**, exceedance of the NO₂ annual mean AQS objective of 40μ g/m³

<u>Underlined</u>, annual mean > $60\mu g/m^3$, indicating a potential exceedance of the NO₂ hourly mean AQS objective

^a Means should be "annualised" as in Boxes 7.9 and 7.10 of LAQM.TG16, if full calendar year data capture is less than 75%

^b If an exceedance is measured at a monitoring site not representative of public exposure, NO₂ concentration at the nearest relevant exposure should be estimated based on the "<u>NO₂ fall-off with distance</u>" calculator (<u>http://laqm.defra.gov.uk/tools-monitoring-data/no2-</u>

falloff.html), and results should be discussed in a specific section. The procedure is also explained in paragraphs 7.77 to 7.79 of LAQM.TG16.

			Ai	Annual Mean Concentration (µg/m ³) - Adjusted for Bias ^a 2012 (Bias 2013 (Bias 2014 (Bias 2015 (Bias 20							
Site ID	Site Type	Within AQMA?	2012 (Bias Adjustment Factor = 0.79)	2013 (Bias Adjustment Factor = 0.75)	2014 (Bias Adjustment Factor = 0.78)	2015 (Bias Adjustment Factor = 0.80)	2016 (Bias Adjustment Factor = 0.71)				
1	Roadside	Ν	-	-	-	-	35.5				
3	Urban background	Y	16.9	15.7	14.9	14.5	14.0				
4	Roadside	Ν	28.0	28.9	27.6	25.7	26.9				
5	Roadside	N	31.9	30.0	28.5	29.6	28.3				
7	Roadside	N	30.9	29.1	29.9	27.9	27.6				
8	Roadside	Ν	30.2	30.1	29.1	28.1	27.5				
9	Roadside	Ν	30.5	29.4	28.7	28.6	26.3				
10	Roadside	Ν	31.3	29.1	29.0	28.0	26.1				
11	Roadside	N	31.3	28.7	28.4	28.1	27.3				
12	Roadside	N	31.8	31.0	29.2	28.9	26.1				
13	Roadside	Ν	29.3	29.7	25.7	26.2	27.9				
14	Roadside	N	32.2	31.3	30.0	30.1	29.6				
15	Roadside	Ν	32.7	30.6	29.8	29.8	29.4				
16	Roadside	Ν	35.2	33.7	34.1	32.8	28.2				
17	Roadside	Ν	31.0	32.9	35.2	33.9	36.8				
18	Roadside	Ν	37.8	37.3	36.6	36.8	33.9				
19	Industrial	Y	18.3	18.6	16.9	16.6	16.8				

Table 2.6 – Results of NO2 Diffusion Tubes (2012 to 2016)

			Aı	nnual Mean Conce	entration (µg/m ³) ·	Adjusted for Bia	s ^a
Site ID	Site Type	Within AQMA?	2012 (Bias Adjustment Factor = 0.79)	2013 (Bias Adjustment Factor = 0.75)	2014 (Bias Adjustment Factor = 0.78)	2015 (Bias Adjustment Factor = 0.80)	2016 (Bias Adjustment Factor = 0.71)
20	Roadside	N	36.0	34.4	34.0	34.1	31.8
21	Roadside	N	30.4	30.8	35.6	39.5	33
22	Roadside	N	28.6	25.3	24.5	25.1	22.6
23	Roadside	N	31.4	30.6	29.2	27.4	29.6
24	Roadside	N	34.2	31.0	30.6	29.2	27.9
25	Roadside	N	28.0	26.0	24.9	24.2	26.8
26	Roadside	N	31.8	32.0	33.8	32.7	30.9
27	Roadside	N	38.2	38.6	38.1	39.1	36.6
28	Roadside	N	26.6	28.9	27.9	27.6	26.1
34	Roadside	N	46.6	46.7	47.5	46.6	40.3

In bold, exceedance of the NO₂ annual mean AQS objective of 40µg/m³

<u>Underlined</u>, annual mean > $60\mu g/m^3$, indicating a potential exceedance of the NO₂ hourly mean AQS objective

^a Means should be "annualised" as in Boxes 7.9 and 7.10 of LAQM.TG16, if full calendar year data capture is less than 75%

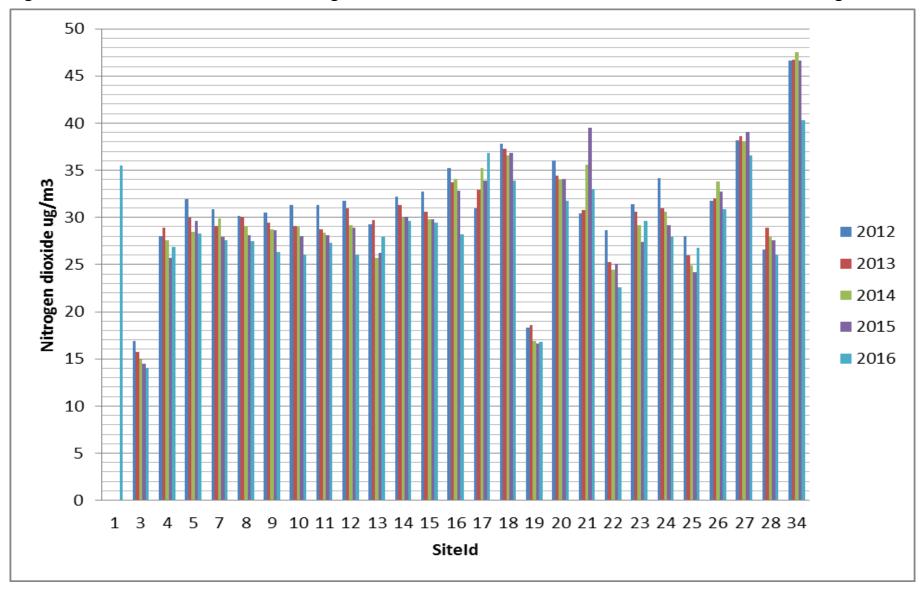


Figure 2.10 – Trends in Annual Mean Nitrogen Dioxide Concentrations Measured at Diffusion Tube Monitoring Sites

The only site that has failed to meet the annual averaged air quality objective during the last five years was the site at Victoria Gardens which was co-located with a continuous analyser. There is no relevant exposure at this site. Some other sites in the vicinity of Victoria Gardens have also been elevated in the past e.g. Nos.3 and 5 Victoria Gardens and 50 Greenway Road. Pontardawe Post Office and the nearby property at 10, Swansea Road have also been raised at times.

Monitoring at 1 Victoria Gardens was previously ceased on account of health & safety concerns since the pavement was very low and narrow and it was considered to be dangerous to use the ladder to exchange the tubes. The property next door at 3, Victoria Gardens was used to estimate NO₂ levels at No.1 Victoria Gardens. The pollution level at this property was estimated using the "NO₂ with distance from roads calculator" spreadsheet. However, monitoring was re-commenced at this property in 2016 by using different holders for the tubes which did not necessitate use of a ladder thereby avoiding the need to use the "NO2 distance from roads calculator".

All sites with relevant exposure complied with the annual averaged air quality objective.

2.2.2 Particulate Matter (PM₁₀)

			Valid Data	Valid Data	Confirm	Ann	ual Mean	Concent	ration (µg	g/m³)
Site ID	Site Type	Within AQMA?	thin Capture for Capture	Capture 2015 % ^b	Gravimetric Equivalent (Y or N/A)	2012* ^c	2013* ^c	2014* ^c	2015 ^c	2016 ^c
PT2	Industrial	Y	88	88	Y	23	19	24	27	22
DS1	Industrial	Y	95	95	Y	16	18	21	20	18
TW1	Industrial	Y	89	89	Y	23	20	27	26	24
TH1	Industrial	Y	90	90	Y	19	17	22	23	20
TR1	Roadside	Y	99	99	Y	22	21	22	22	16
LW1	Industrial	N	92	92	Y	19	19	25	24	21
DK1	Industrial	N	94	94	Y	18	17	20	20	20
PS2 ^d	Industrial	Y	86	86	Y	22	31	26	n/a	23

Table 2.7 – Results of Automatic Monitoring for PM₁₀: Comparison with Annual Mean Objective

In bold, exceedance of the PM_{10} annual mean AQS objective of $40\mu g/m^3$

^a i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" as in Boxes 7.9 and 7.10 of LAQM.TG16, if valid data capture is less than 75%

* Annual mean concentrations for previous years are optional

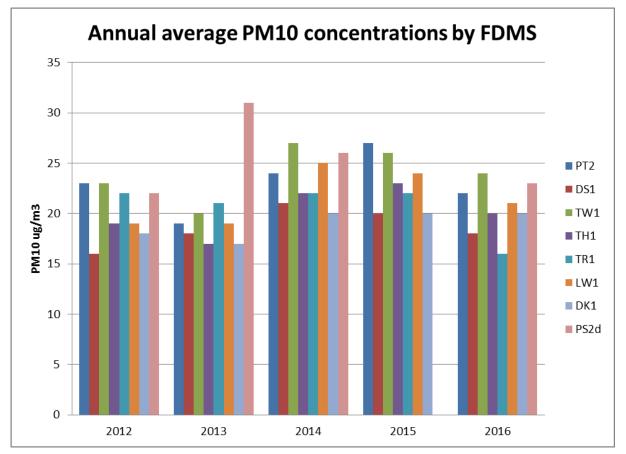


Figure 2.11 – Trends in Annual Mean PM₁₀ Concentrations

The Twll yn y Wal site experiences the highest concentrations in three years out of 5, with Port Talbot Fire Station the next most frequent with 2 out of 5 years.

Although the Twll yn y Wal site is clearly impacted significantly in terms of the annual average, the impact on the short term average is significantly less as shown in the next figure.

			Valid Data	Valid Data	Confirm	Nur	nber of D	aily Mea	ns > 50µg	J/m ³
Site ID	Site Type	Within AQMA?	Capture for Monitoring Period % ^a	Capture 2015 % ^b	Gravimetric Equivalent (Y or N/A)	2012* ^c	2013* ^c	2014* ^c	2015 ^c	2016 ^c
PT2	Industrial	Y	88	88	Y	11	34	16	28	8
DS1	Industrial	Y	95	95	Y	3	2	5	5	0
TW1	Industrial	Y	89	89	Y	8	9	6	10	4
TH1	Industrial	Y	90	90	Y	3	4	3	4	1
TR1	Roadside	Y	99	99	Y	8	15	6	4	0
LW1	Industrial	N	92	92	Y	2	21	22	15	9
DK1	Industrial	N	94	94	Y	5	10	4	6	2
PS2 ^d	Industrial	Y	86	86	Y	11	46	17	n/a	9

Table 2.8 – Results of Automatic Monitoring for PM₁₀: Comparison with 24-hour Mean Objective

In **bold**, exceedance of the PM₁₀ daily mean AQS objective $(50\mu g/m^3 - not to be exceeded more than 35 times per year)$

^a i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c if data capture for full calendar year is less than 90%, include the 90.4th percentile of 24-hour means in brackets

* Number of exceedances for previous years is optional

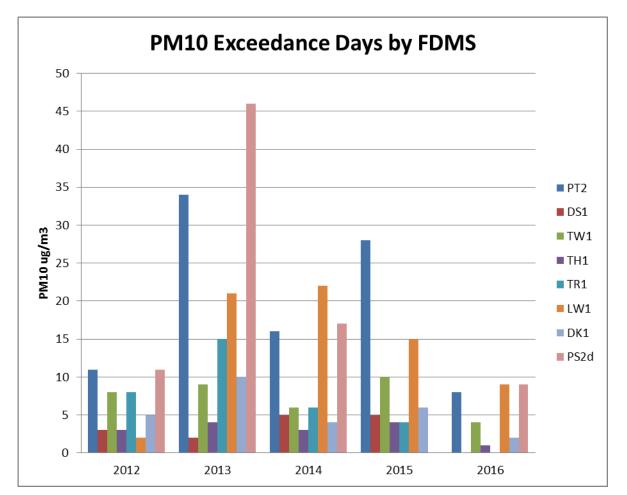


Figure 2.12 – Trends in PM₁₀ exceedance days

Port Talbot Fire Station, Little Warren and Prince Street had the highest number of exceedances in two years out of five.

Site ID	Site Type	Within AQMA?	Valid Data Capture for Monitoring Period % ^a	Valid Data Capture 2015 % ^b	Confirm Gravimetric Equivalent (Y or N/A)	Annual Mean Concentration (μg/m ³) 2016 ^c
$PT2P^{d}$	Industrial	Y	97	97	Y	21.0

Table 2.9 - Results of Non-Automatic Monitoring for PM₁₀: Comparison with Annual Mean Objective

In bold, exceedance of the PM_{10} annual mean AQS objective of $40\mu g/m^3$

^a i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c Means should be "annualised" <u>as in Box 3.2 of TG(09)</u> (<u>http://laqm.defra.gov.uk/technical-guidance/index.html?d=page=38</u>), if valid data capture is less than 75%

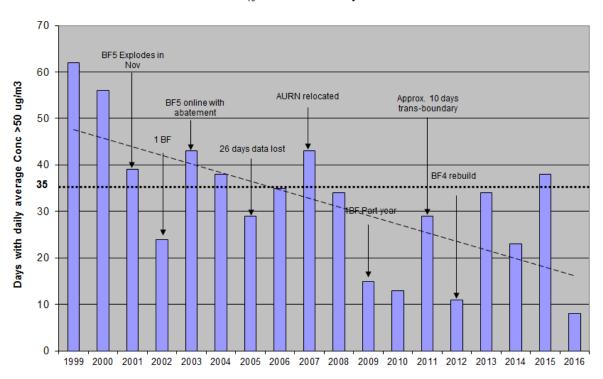
* Annual mean concentrations for previous years are optional

^d Measurements carried out with a Partisol.

All sites have always easily complied with the annual mean air quality objective.

Site ID	Site Type	Within AQMA?	Valid Data Capture for Monitoring Period % ^a	Valid Data Capture 2015 % ^b	Confirm Gravimetric Equivalent (Y or N/A)	Number of Daily Means > 50µg/m ³ 2016 ^c
PT2P ^d	Industrial	Y	97	97	Y	11

Table 2.10 - Results of Non-Automatic Monitoring for PM₁₀: Comparison with 24-hour Mean Objective


In **bold**, exceedance of the PM₁₀ daily mean AQS objective ($50\mu g/m^3 - not$ to be exceeded more than 35 times per year)

^a i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c if data capture for full calendar year is less than 90%, include the 90.4th percentile of 24-hour means in brackets

PM₁₀ Exceedance Days

There has been a trend towards decreasing numbers of PM_{10} exceedances since 1999. Blast furnace No. 5 exploded in November 2001, so there were two months during that year when only one blast furnace was operating. One blast furnace was operational during the whole of 2002. There was an increase in exceedances during 2003 with the re-commencement of two blast furnace operation.

In 2006 26 days of data were lost due to faulty monitoring equipment. The AURN monitoring station was relocated from Groeswen Hospital to Port Talbot Fire Station in 2007, which was also the last year in which the Air Quality Objective was exceeded at an AURN site. There was 1 blast furnace operation for part of the year during 2009.

2010 was a very good year for PM_{10} compliance and it was also a year in which there was only one trans-boundary PM_{10} exceedance. By contrast, there were approximately 10 trans-boundary PM_{10} exceedance days during 2011.

Another good year in 2012 was followed by a relatively poor one in 2013. Whilst the FDMS at the Fire Station recorded only 17 PM_{10} exceedance days, the co-located Partisol recorded some 34 over the same period. Both data sets were considered to be correct so the higher of the two was utilised as the official figure.

The situation was much improved in 2014 where there were 16 exceedance days at the Fire Station using the FDMS equipment. But, the PM_{10} Partisol at Port Talbot Fire Station recorded 23 exceedances during the same period. As the data from both pieces of equipment are considered to be valid, the Council has chosen to accept the higher of the two results.

2015 was a poor year for PM_{10} with 28 exceedance days at the Fire Station with the FDMS equipment. Although the data capture was 92%, several additional exceedance days are likely to have arisen on days when the equipment was not functioning correctly. This is evidenced by the results from the co-located PM_{10} Partisol, which recorded a total of 38 exceedance days during that year. Consequently this figure was adopted as the official figure for exceedances for 2015. However, the government should also take into account the effect of natural sources or particulates e.g. sea salt. Consequently, it is possible that the short-term air quality objective for particulates may be achieved once this is taken into account.

2016 was one of the best years ever with only 8 exceedance days at Port Talbot Fire Station. This good result is tempered by the data capture rate, which was 2% below the target for the AURN (90%). The PM_{10} Partisol co-located at Port Talbot Fire Station had an acceptable data capture rate (97%) and recorded 11 exceedance days.

2.2.3 Sulphur Dioxide (SO₂)

There were no exceedances of the 15 minute average of 266 μ g/m³ (up to 35 are allowed annually) during 2016 as measured at Port Talbot Fire Station, where the annual data capture rate was 94%. Neither were there any exceedances of the 350 μ g/m³ (maximum 155 μ g/m³) 1-hour mean or the 125 μ g/m³ daily mean (maximum 44 μ g/m³). The monitoring station site is representative of relevant public exposure as previously described.

Measurements are carried out using a Thermo 43i UV Fluorescent analyser under the QA/QC arrangements of the AURN.

Sito		Within	Valid Data Capture for	Valid Data	Number of: ^c			
Site ID	Site Type	AQMA?	Monitoring Period % ^a	۵ Capture 2016	15-minute Means > 266µg/m ³	1-hour Means > 350µg/m ³	24-hour Means > 125µg/m ³	
PT2	Urban industrial	Y	94	94	0	0	0	

Table 2.11 – Results of Automatic Monitoring for SO₂: Comparison with Objectives

In bold, exceedance of the relevant AQS objective (15-min mean = 35 allowed/year; 1-hour mean = 24 allowed/year; 24-hour mean = 3 allowed/year)

^a i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year

^b i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%)

^c if data capture for full calendar year is less than 90%, include the relevant percentile in bracket (in μ g/m³): 15-min mean = 99.9th ; 1-hour mean = 99.7th ; 24-hour mean = 99.2th percentile

2.2.4 Benzene

Benzene is no longer monitored. It was previously continuously monitored at Baglan Primary School, using a Perkin Elmer Ozone Precursor system. Monitoring was discontinued in December 2005 as the concentration of pollutants of concern had reduced to background levels. The same applies in respect of 1,3-butadiene, which was monitored using the same equipment. There are no new significant local sources of these pollutants which merit more measurements.

2.3 Other Pollutants Monitored

2.3.1.1 Lead

Lead is monitored at Pontardawe Leisure Centre as part of a study of 13 metals that has continued since 1972. A Thermo Partisol[®] 2025 gravimetric sampling system is used to collect daily samples using Pall Gelman GN4-Metricel filters. These are exposed on a weekly basis and subsequently analysed using inductively coupled mass spectrometry (ICP-MS). The results for 2016 show that the annual average concentration of lead was 7.1 ng/m³. This is well within the Air Quality Objective of 0.25 μ g/m³ (250 ng/m³) to be achieved by 31st December 2008. The analysis and reporting is currently contracted the National Physical Laboratory.

Lead is also measured at Milland Road in Neath, where the annual average concentration was 6.8 ng/m3 during 2016.

There are a further three metals national network monitoring stations at Port Talbot Fire Station, Brecon Road and Tawe Terrace in Pontardawe. The concentrations of lead at these sites were 9.1, 6.0 and 7.9 ng/m³ respectively, all of which easily comply with the Air Quality Objective.

2.3.1.2 Carbon monoxide

There were no exceedances of the 8-hour average of 10 mg/m³ (maximum 4.1 mg/m³) during 2016. The monitoring station site is representative of relevant public exposure as previously described.

Measurements are carried out using a Thermo 48i analyser under the QA/QC arrangements of the Automatic Urban and Rural Network (AURN).

			Valid Data	Valid Data	Number of Exceedances (percentile in bracket μg/m ³) ^c	
Site ID	Site Type	Within AQMA?	Capture for monitoring Period % ^a	-	8 hour running mean > 10 mg/m ³	
PT2	Urban industrial	Y	99	99	0	

 Table 2.12 - Results of Automatic Monitoring of carbon monoxide

^a i.e. data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.

^b i.e. data capture for the full calendar year (e.g. if monitoring was carried out for six months the maximum data capture for the full calendar year would be 50%.) ^c if data capture is less than 90%, include the relevant percentile in brackets

2.3.1.3 PM_{2.5}

 $\text{PM}_{2.5}$ describes the fraction of airborne particulate matter that is less than 2.5 microns in size.

The EU Clean Air for Europe (I) programme has introduced a framework for managing $PM_{2.5}$. A target of 20 µg/m³ and a limit of 25 µg/m³ are to be met by 2015. Exposure reduction is to be used to bring about a 20% reduction in background $PM_{2.5}$ levels by 2020 as based upon baseline (2010) values.

Data is drawn from the AURN monitoring station at Port Talbot Fire Station and Prince Street (since 18th March 2014).

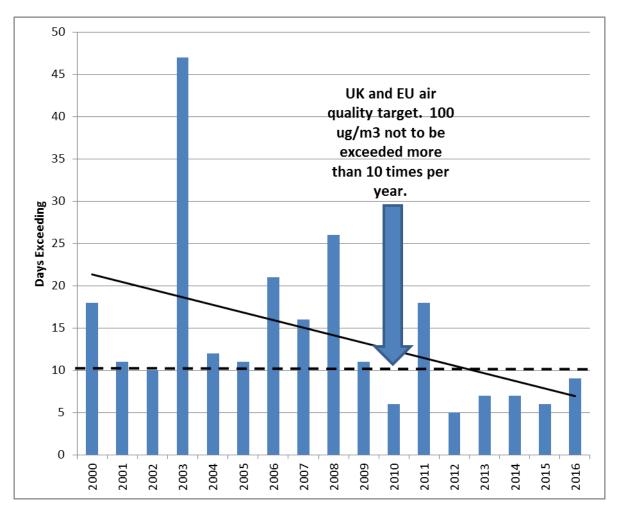
The data capture at the Fire Station site and Prince Street sites were 91%, and 90% respectively.

The annual average concentrations at Port Talbot Fire station and Prince Street were 9 mg/m³ and 10 mg/m³ respectively.

The annual average PM_{2.5} concentrations at sites in Port Talbot were well below both the target and limit values to be achieved by 2015.

2.3.1.4 Ozone

Ozone is a highly reactive chemical which, when present in the lower atmosphere at high concentrations, can irritate the eyes and air passages, causing breathing difficulties. Ozone is a so-called secondary pollutant since it is produced indirectly by the reaction between hydrocarbons, NO₂ and sunlight. Ozone tends to be lower in urban areas because high levels of NO are produced by vehicles and this helps to break down ozone to oxygen and NO₂. The highest ozone therefore tends to occur in rural areas and during the summer months when the sun shines the longest. The ozone forming reactions are complex and have a time lag associated with them which can mean that ozone levels are greatest downwind of the location where the pollution is produced. It is recognised that low level ozone formation is an international problem and that exceedances of the National Air Quality Standard would still occur, even if all sources of hydrocarbons were eliminated in this country.


No statutory Air Quality Objective level for Ozone has been set, owing to the potential for trans-boundary sources. However, there is a recommended Air Quality objective for ozone of 100 μ g/m³, measured as a rolling 8 hour average. This was breached on 81 occasions on a total of 9 days at the Fire Station.

The long term trend for ozone exceedances shows a slight improvement over time as shown in Table 2.13 and Figure 2.16 below.

Table 2.13 – Allitual ozofie exceedances 2000 – 2016				
Year	Exceedances of Air Quality	No. of Days of Exceedance		
	Standard 8hr running mean >			
	100 μg/m ³			
2000	133	18		
2001	81	11		
2002	66	10		
2003	403	47		
2004	83	12		
2005	56	11		
2006	189	21		
2007	108	16		
2008	257	26		
2009	71	11		
2010	30	6		
2011	147	18		
2012	57	5		
2013	45	7		
2014	40	7		
2015	40	6		
2016	81	9		

Table 2.13 – Annual ozone exceedances 2000 – 2016

2.3.1.5 Polyaromatic hydrocarbons (PAH)

Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic compounds, some of which are toxic and/or possible or proven human carcinogens; they are produced through industrial and incomplete combustion of carbon containing fuels.

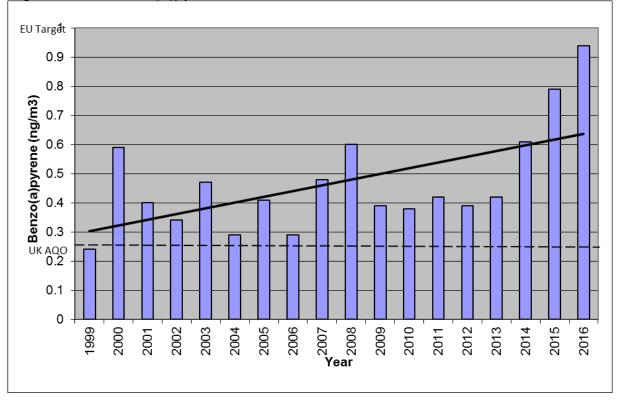
Air quality standards have been set by UK and EU and are based upon measurements of benzo[a]pyrene which is also known as B[a]P.

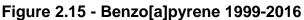
The UK Air Quality Objective for PAHs is based on the recommendations of the Expert Panel on Air Quality Standards (EPAQS). It specifies an annual air quality standard of 0.25 ng/m³ benzo[a]pyrene to be achieved by 2010.

The EU Air Quality Daughter Directive (2005/107/EC) specifies a target value of 1 ng/m³ for the annual mean concentration of benzo[a]pyrene to be achieved by 2012.

Monitoring of benzo[a]pyrene first commenced at Groeswen Hospital in 1999 using an Anderson sampler. This equipment was replaced by a Digitel sampler in the last quarter of 2007. Monitoring now takes place at Port Talbot Fire Station following the redevelopment of Groeswen Hospital site.

Data is published on the UK-Air website and the latest data available is for the year of 2015.


B[a]P ng/m ³	Year
0.24	1999
0.59	2000
0.40	2001
0.34	2002
0.47	2003
0.29	2004
0.41	2005
0.29	2006
0.48	2007
0.60	2008
0.39	2009
0.37	2010
0.42	2011
0.39	2012
0.42	2013
0.61	2014
0.80	2015
0.94	2016


Table 2.14. - Benzo[a]pyrene annual averages 1999-2016

The results are shown graphically in figure 2.15 below. The B[a]P concentration at Port Talbot frequently exceeds the Air Quality Objective of 0.25 ng/m³, but has never exceeded the EU target value of 1 ng/m³ thus far. However, the trend has continued

to increase over time and the rate of increase has been greatest in recent years. Consequently, it looks likely that the EU Limit value may be breached in 2017 if this trend continues.

A report by Ricardo in 2004 identified four sites on the network where there were compliance problems with the UK Air Quality Objective. Sites in Northern Ireland and Scotland were probably related to use of solid fuel in domestic heating. Whereas Scunthorpe and Port Talbot were due to the steel works (probably coke production).

2.3.1.6 Metals monitoring

Monitoring of the concentrations of 13 airborne metals has been carried out continuously in the Pontardawe area since 1972. Pumps continuously sample ambient air and particles are collected on filters that are analysed by Ricardo-AEA. Until 1997, this work was carried out at Trebanos Sewage Works. Following a programme of construction at the site, monitoring was re-located to Pontardawe Leisure Centre. The objectives are to establish whether local industry has any significant impact upon airborne metal concentrations in the area. The Pontardawe site is approximately 4km downwind of the Nickel works at Clydach, as compared to the Trebanos site, which was about 2km from the works. The Pontardawe site is also approximately 1km upwind of Wall Colmonoy, a manufacturer of metal alloys which is subject to an Environmental Permit issued by this Authority. Measurements are also made in Neath near to another manufacturer of metal alloys, Sandvik Osprey.

Monitoring was carried out in respect of the following metals:

- Lead (Pb)
- Nickel (Ni)
- Zinc (Zn)
- Arsenic (As)
- Cadmium (Cd)
- Chromium (Cr)
- Copper (Cu)
- Iron (Fe)
- Cobalt (Co)
- Selenium (Se)
- Antimony (Sb)
- Cerium (Ce)
- Scandium (Sc)
- Manganese (Mn)
- Vanadium (V)

In December 2004 the European Union published a Directive relating to arsenic, cadmium, mercury, nickel and PAH, (2004/107/EC). This "4th Daughter Directive" set target values for arsenic, cadmium, nickel and benzo[a]pyrene (a PAH) for the total content in the PM₁₀ fraction averaged over a calendar year. No limits or targets were set for mercury. The Directive target values for metals are shown below and were to be achieved by 31st December 2012:

Nickel	20 ng/m ³
Arsenic	6 ng/m ³
Cadmium	5 ng/m ³

The Directive requires measurement of air concentrations to be made using valid PM_{10} monitoring methods. The polypropylene ducts previously used to hold the filters did not conform exactly to a PM_{10} inlet specification and monitoring using a compliant method commenced during 2006. This necessitated the purchase of a Partisol 2025 sampler manufactured by Rupprecht & Patashnick Inc. The new and existing samplers were run concurrently for a period in order to assess the comparability of the results. The existing sampler was discontinued at the end of 2006 following completion of the comparability test.

Results

2.3.1.6.1 Pontardawe Leisure Centre

The annual mean nickel concentration found in 2016 was 21.6 ng/m³, which is 103% of the Target Value to be met by the end of 2012.

The annual mean concentrations of arsenic and cadmium have been found to be 0.70 ng/m^3 and 0.24 ng/m^3 respectively. These concentrations represent approximately 11.7% and 4.8% of their proposed EU target values of 6 and 5 ng/m³ respectively.

Lead results have been discussed in section 2.2.5.1 above.

2.3.1.6.2 Port Talbot

Metals have also been measured as part of the UK Metals Network at Port Talbot Fire Station since February 2008. Some of the metals monitored in the network are different to those measured at Pontardawe Leisure Centre e.g. platinum (Pt), vanadium (V) and mercury (Hg). The annual average of monthly results are shown in Table 2.15, where they are also compared to the corresponding figures for Pontardawe.

The nickel concentration at Port Talbot in 2015 (5.0 ng/m³) was 25% the EU Target of 20 ng/m³. This figure is significantly increased over 2014 (1.8 ng/m³), mainly due to two high results during the year.

The annual mean concentrations of arsenic and cadmium have been found to be 0.66 ng/m^3 and 0.36 ng/m^3 respectively. These concentrations represent approximately 11.0% and 7.2% of their EU target values of 6 and 5 ng/m³ respectively.

Lead results have been discussed in section 2.2.5.1 above.

The level of iron in the atmosphere at Pontardawe (206 ng/m³) is only 6.3% of the corresponding concentration at Port Talbot (3253 ng/m³). Whilst the concentration iron in Port Talbot does not represent a concern in respect of health, it represents approximately 11% of the PM_{10} measured in Port Talbot and highlights the influence of the Port Talbot steelworks.

2.3.1.6.3 Pontardawe Tawe Terrace

A new monitoring station was set up in September 2009, which is approximately 270 metres from Wall Colmonoy's Part B permitted site in Pontardawe. This monitoring station was set up in order to further investigate the potential for nickel emissions from this site, which uses approximately 500 tonnes of the metal each year to manufacture a variety of hard-wearing products. The monitoring station uses a Partisol 2000 sampler with filters provided and analysed by the National Physical Laboratory (NPL) in accordance with BS EN 14902.

The average concentration of nickel in 2016 was 22.1 ng/m³ which is 110% of the Air Quality Objective. This is a significant improvement upon the figure recorded in 2014 (43.4 ng/m3).

The annual mean concentrations of arsenic and cadmium have been found to be 0.68 ng/m^3 and 0.16 ng/m^3 respectively. These concentrations represent approximately 11.3% and 3.2% of their EU target values of 6 and 5 ng/m³ respectively.

2.3.1.6.4 Brecon Road, Pontardawe

The monitoring station was set up in August 2011 and is approximately 500m north east of the Wall Colmonoy site. The monitoring station was set up to be as close as possible to the area predicted to have the highest modelled nickel downwind concentrations in a residential location. The monitoring station uses a Partisol 2000 sampler with filters provided and analysed by the National Physical Laboratory (NPL) in accordance with BS EN 14902.

The average concentration of nickel in 2015 was 9.23ng/m³ which is 46.2% of the Air Quality Objective.

The annual mean concentrations of arsenic and cadmium have been found to be 1.04 ng/m^3 and 0.15 ng/m^3 respectively. These concentrations represent approximately 17.3% and 3.0% of their EU target values of 6 and 5 ng/m³ respectively.

2.3.1.6.5 Milland Road, Neath

The monitoring station was set up in Milland Road car park in December 2014. It lies between the Sandvik Osprey plant and the nearest receptors in King Street.

The monitoring station uses a Partisol 2000 sampler with filters provided and analysed by the National Physical Laboratory (NPL) in accordance with BS EN 14902.

The average concentration of nickel in 2016 was 4.43 ng/m³ which is 22.2% of the Air Quality Objective. This compares favourably to the 2015 annual average concentration which was 9.95 ng/m³.

The annual mean concentrations of arsenic and cadmium have been found to be 0.60 ng/m^3 and 0.29 ng/m^3 respectively. These concentrations represent approximately 10.0% and 5.8% of their EU target values of 6 and 5 ng/m³ respectively.

The metals results for 2016 are summarised in Table 2.15 below.

Element	2016 annual mean concentration (ng/m ³)				
	Port Talbot Fire Station	Pontardawe Brecon Road	Pontardawe Leisure Centre	Pontardawe Tawe Terrace	Neath Milland Road
As	0.69	1.08	0.70	0.68	0.60
Cd	0.70	0.20	0.24	0.28	0.29
Ce		-	0.17	-	-
Со	0.19	0.26	1.13	3.06	0.95
Cr	4.18	1.95	5.77	12.1	5.85
Cu	8.62	5.45	4.61	7.06	16.9
Fe	2364	205	209	207	469
Hg*	-	-	-	-	
Mn	29.5	3.31	5.06	4.91	9.14
Ni	2.40	4.80	21.6	47.4	4.43
Pb	9.08	6.01	7.10	7.89	6.76
Sb	-	-	1.33	-	-
Sc	-	-	0.07	-	-
Se	0.78	1.23	1.35	1.31	1.25
Zn	35.6	10.8	11.6	13.0	21.0
V	2.97	0.66	0.81	0.70	0.91

 Table 2.15 - Annual average metal concentrations during 2016

The following chart shows the nickel results from all sites in the Swansea Valley since 2000. Some data is from monitoring sites operated by Swansea City Council.

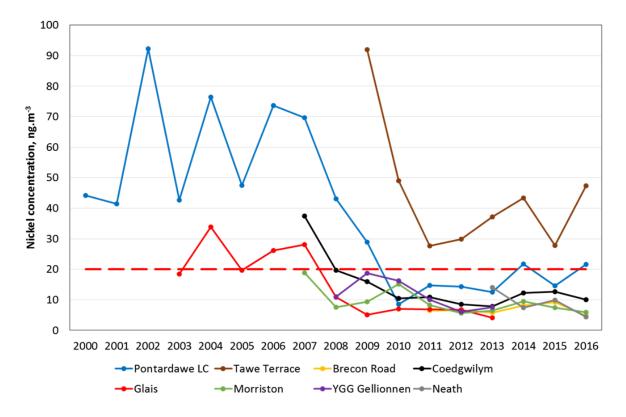


Figure 2.16 - Nickel trends 2000 – 2016

Note: Graph produced by Richard Brown of NPL.

Figure 2.19 shows the location of all of these monitoring sites and their compliance relative to the Target value (TV = 20 ng/m^3). The Lower Assessment Threshold (LAT = 10 ng/m^3) and the Upper Assessment Threshold (14 ng/m³) are included for completeness, but do not have any implications if they are exceeded.

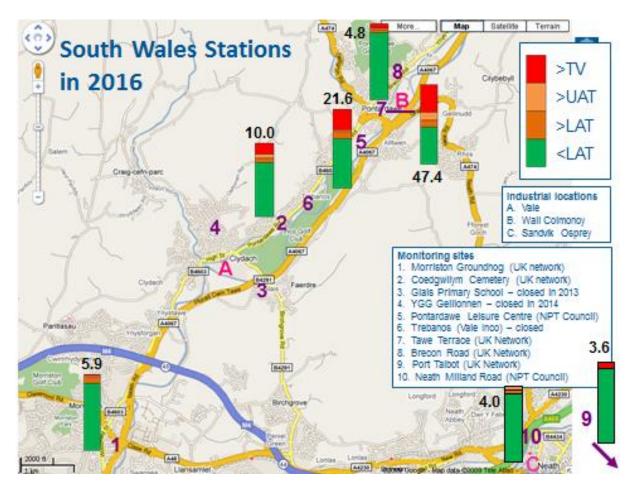


Figure 2.17 Location of nickel monitoring stations in the Swansea Valley

Note: Graph produced by Richard Brown of NPL.

Tawe Terrace and Pontardawe Leisure Centre are the only sites which currently exceeds the E.U. Target. Levels of nickel at Tawe Terrace (47.4 ng/m³) increased substantially compared to the 2015 value (22.1 ng/m³) and were similar to the 2014 figure (43.4 ng/m³). This is a disappointing result given the improvements to abatement systems that have taken place in recent years. Investigations suggest that faults and maintenance problems are probably to blame and this will be the focus for regulation of the plant in 2017.

Levels of arsenic and cadmium easily comply with EU Target values at all sites.

Lead results have been discussed in section 2.2.5.1 above.

2.3.1.7 Grit and dust monitoring

Previous reports have described how deposit gauges have been used to collect atmospheric fallout from a number of locations. The analysis of the collected grit and dust also includes a sophisticated characterisation of the deposit, using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA). During 2013, sampling of this kind took place at 12 sites in the County Borough.

The report includes results from the following locations:

- Prince Street, Margam, Port Talbot
- Port Talbot Fire Station
- Wembley Avenue, Onllwyn
- Eglwys Nunydd Reservoir, Margam, Port Talbot
- Little Warren, Port Talbot.
- Tairgwaith, Amman Valley
- Llygad yr Haul, Glynneath
- Gwaun Cae Gurwen, Amman Valley
- Cil Carne Farm, Bryn, Port Talbot
- Parish Road, Cwmgwrach
- Dyffryn School, Bertha Road, Port Talbot.
- Ochwr y Waun, Cwmllynfell

Pie charts and time series graphs are presented for each site for 2013 and the preceding year as a comparison. The pie charts show the average percentage composition of the samples collected during the year, with the average fallout rates of each component in $mg/m^2/day$ underneath. The time series show how the fallout rate has changed over the course of the year. The pie charts define the composition of the collected deposit into the following categories:

- Coal unburned coal.
- Carbonised partly burnt carbon based material that may be derived from combustion of coal, oil, wood etc.
- Sand sand and silica based minerals.
- Dirt aluminium, sodium, potassium, silicon, iron and calcium, usually combined with oxygen. e.g. silicates, clay, building materials and other mineral material typically found in soil and earth.
- Fly Ash spherical mineral particles having arisen from combustion.
- Plant/Animal miscellaneous fragments of insects, plant material etc.
- Calcium Rich particles with an unusually high calcium content e.g. chalk, cement etc.
- Iron Rich particles consisting of, or rich in iron.
- Others anything not falling into the categories above.

Additional information is provided to indicate the annual average and maximum fallout levels, the data capture rate, and the number of days exceeding¹ (or within

¹ The average fallout rate is calculated by taking the total fallout during a sampling period of about 4 weeks and dividing that figure by the number of days. If the average for that sampling period is greater than 200 mg/m2/day then the result is reported as "number of days exceeding" equal to

10% of) the "nuisance limit" (200 mg/m²/day), which some recognise as relevant for this method of monitoring. However it should be noted that this "limit" is not a statutory limit and the public perception of what constitutes a nuisance might now suggest that a lower "limit" would be appropriate. The Minerals Technical Advice note from Welsh Government suggests a limit of 80 mg/m²/day for coal working. The advice note can be found at this location:

http://wales.gov.uk/docs/cabinetstatements/2009/090120coaltanen.pdf

A map showing the locations of each of the monitoring sites is also shown in Figure 2.18. Figures 2.19 to 2.42 comprise pairs of time series and pie charts for each site. The time series charts show how the fallout rate has varied over the period(s) concerned, whilst the pie charts show the average composition. The tables that accompany the charts highlight any differences that may have occurred over the period. Figure 2.43 shows the average fallout rate for each site during 2016 in a bar chart, and Table 2.17 holds the data for this chart. The sites are ranked in a table and graphically according to the average fallout rate. Figure 2.44 and Table 2.18 show how fallout rates have varied in the long term.

Fallout levels have been categorised as "low", "moderate", "high", or "very high" in order to aid comprehension. These categories are defined by this Authority and are not official categories.

Fallout rate mg/m ² /day	Category
< 40	Low
40 to 79	Moderate
80 to 159	High
> 159	Very high

Table 2.16 - Fallout categories as defined by NPT

Each site description includes a coloured bar to show it's categorisation as well as an indication of the percentage change in fallout rates over the last year alongside.

the number of days in the sampling period. The total number of days exceeding for the year is the sum of each of these periods where the average was greater than 200 mg/m2/day.

Results by site

2.3.1.7.1 Cil Carne Farm, Bryn, Port Talbot (Figs. 2.19 & 2.20)

The "nuisance limit" was not exceeded in 2016 and no samples reached within 10% of 200 mg/m²/day. The maximum fallout rate was 32 mg/m²/day and the average 17 mg/m²/day, the corresponding values for 2015 were 40 and 24 mg/m²/day respectively. There was 29% decrease in fallout rates compared to the previous year.

2.3.1.7.2 Prince Street, Port Talbot (Figs. 2.21 & 2.22) High -33%

The "nuisance limit" (200 mg/m²/day) was exceeded on 56 days in 2016 and there were a further 41 days within 10% of the "nuisance limit". During the previous year there were exceedances on 147 days exceeding. In 2016, the maximum fallout rate was 265 mg/m²/day and the average 151 mg/m²/day, the corresponding values for 2015 were 482 and 226 mg/m²/day respectively. The average fallout rate fell by 33%, a welcome improvement on the two "very high" previous years. The improvement was due to reductions in coal, dirt, iron rich material and plant/animal fragments.

2.3.1.7.3 Port Talbot Fire Station (Figs. 2.23 & 2.24) High -29%

The "nuisance limit" was exceeded on 160 days during 2016 but there were no days within 10% of the "nuisance limit". The corresponding figures for 2015 were 183 days exceeding the "nuisance limit" and 30 days within 10%. The maximum fallout rate was 245 mg/m²/day and the average 153 mg/m²/day, and the corresponding values for 2015 were 524 and 224 mg/m²/day respectively. There was a 29% decrease in fallout rates compared to the previous year, which was mainly due to reductions in iron rich material, dirt and coal.

2.3.1.7.4 Eglwys Nunydd Reservoir, Port Talbot (Figs. 2.25 & 2.26) Moderate +13%

The "nuisance limit" was not exceeded during 2016 and there were no days within 10% of the "nuisance limit". This was also the case in 2015. The maximum fallout rate was 84 mg/m²/day and the average 45 mg/m²/day, and the corresponding values for 2015 were 75 and 40 mg/m²/day respectively. There was a 13% increase in fallout rates compared to the previous year.

2.3.1.7.5 Gwaun Cae Gurwen (Figs. 2.27 & 2.28) +13%

The "nuisance limit" was not exceeded during 2016 and no samples reached within 10% of 200 mg/m²/day. The maximum fallout rate was 27 mg/m²/day and the average 17 mg/m²/day, and the corresponding values for 2015 were 27 and 15 mg/m²/day respectively. There was a 14% decrease in fallout rates compared to the previous year.

2.3.1.7.6 Tairgwaith (Figs. 2.29 & 2.30) **Low** No change

The "nuisance limit" was not exceeded and no samples reached within 10% of 200 mg/m²/day. The maximum fallout rate was 42 mg/m²/day and the average 21 mg/m²/day, the corresponding values for 2015 were 32 and 21 mg/m²/day respectively. There was no change in fallout rates compared to the previous year.

2.3.1.7.7 Parish Road, Cwmgwrach (Figs. 2.31 & 2.32) -45%

The "nuisance limit" was not exceeded and no samples reached within 10% of 200 mg/m²/day. The maximum fallout rate was 43 mg/m²/day and the average 18 mg/m²/day, the corresponding values for 2015 were 98 and 33 mg/m²/day respectively. There was a 45% decrease in fallout rates compared to the previous year.

2.3.1.7.8 Llygad yr Haul, Glynneath (Figs. 2.33 & 2.34) **Low** -21%

The "nuisance limit" was not exceeded and no samples reached within 10% of 200 mg/m₂/day. The maximum fallout rate was 50 mg/m²/day and the average 23 mg/m²/day, the corresponding values for 2015 were 76 and 29 mg/m²/day respectively. There was a 21% decrease in fallout rates compared to the previous year.

2.3.1.7.9 Wembley Avenue, Onllwyn (Figs. 2.35 & 2.36) **Low** +26%

The "nuisance limit" was not exceeded and no samples reached within 10% of 200 mg/m²/day. The maximum fallout rate was 52 mg/m²/day and the average 24 mg/m²/day, the corresponding values for 2015 were 43 and 19 mg/m²/day respectively. This represented an increase of 26%, which was mainly due to increases in coal and plant/animal fragments.

2.3.1.7.10 Little Warren, Port Talbot (Figs. 2.37 & 2.38) Moderate -6%

The "nuisance limit" was not exceeded in 2016 and there were no days within 10% of 200 mg/m²/day. The maximum fallout rate was 85 mg/m²/day and the average 51 mg/m²/day, the corresponding values for 2015 were 81 and 54 mg/m²/day respectively. There was a 6% decrease in fallout rates compared to the previous year.

2.3.1.7.11 Dyffryn School, Port Talbot (Figs. 2.39 & 2.40) Moderate -38%

The "nuisance limit" was not exceeded during 2016 and there were no days within 10% of the "nuisance limit". There were 54 days exceeding the nuisance limit during 2015. The maximum fallout rate was 124 mg/m²/day and the average 65 mg/m²/day, and the corresponding values for 2015 were 248 and 104 mg/m²/day respectively. There was a 38% decrease in fallout rates compared to the previous year, which was due to reductions in coal, iron rich material, dirt and plant/animal fragments.

2.3.1.7.12 Cwmllynfell (Figs. 2.41 & 2.42) High +29%

The "nuisance limit" was not exceeded during 2016 and no samples were within 10% of the "nuisance limit". The maximum fallout rate was 177 mg/m²/day and the

average 107 mg/m²/day, and the corresponding values for 2015 were 249 and 83 mg/m²/day respectively. There was a 29% increase in fallout rates compared to the previous year, which was mainly due to more dirt and coal.

2.3.1.7.13 Summary

The sites at Prince Street and Port Talbot Fire Station remain as top ranked in terms of average fallout rate, although Cwmllynfell is now 3rd highest, which is probably due to opencast activity in the area. The decreases of approximately 30% in fallout rates at these two Port Talbot sites are a welcome improvement on the two record-breaking previous years.

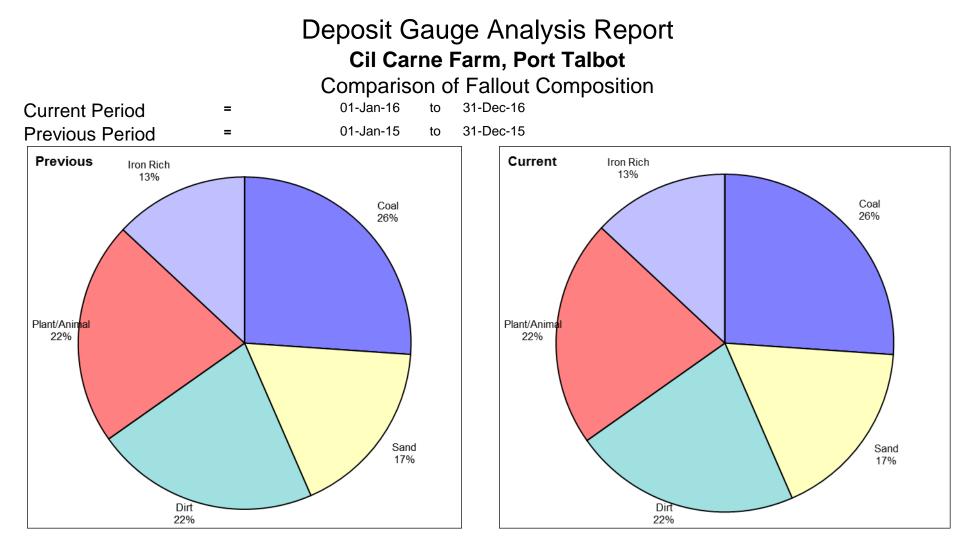
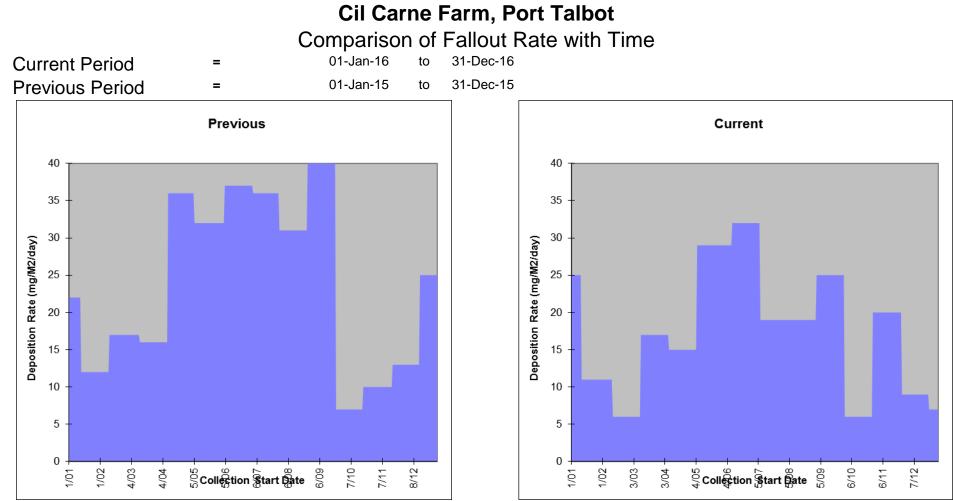
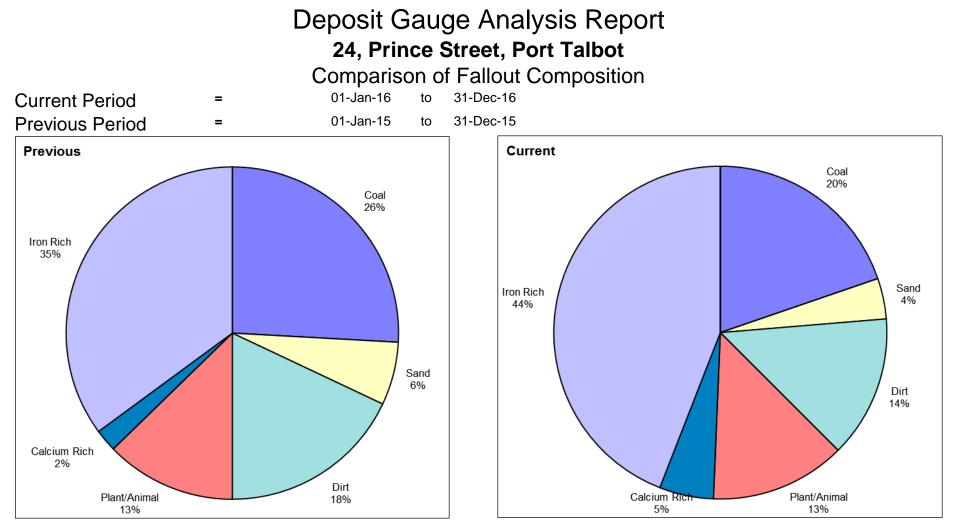
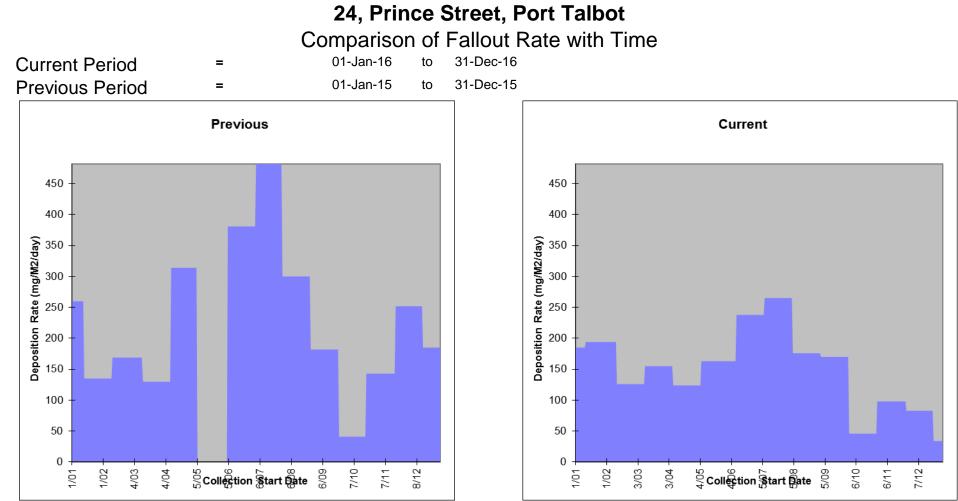


Figure 2.18 Deposit gauge locations

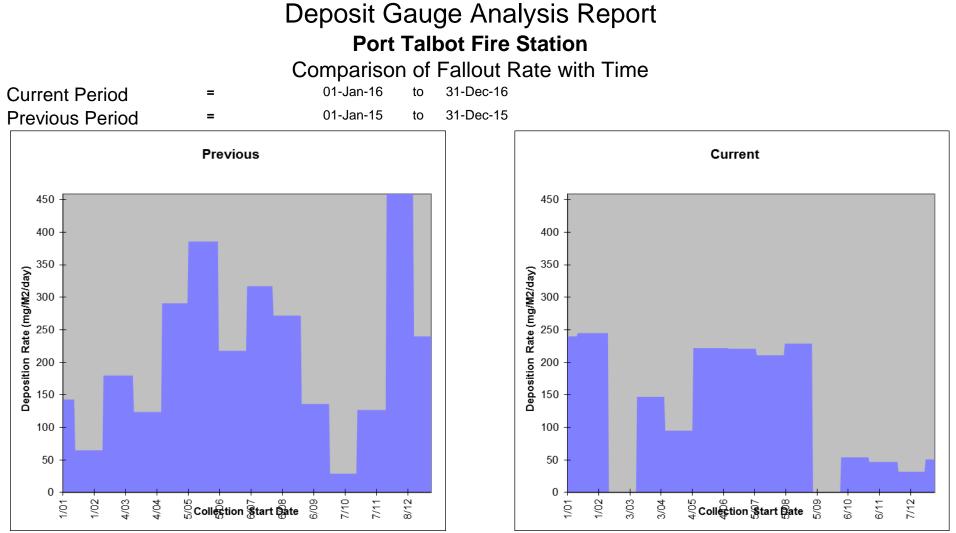


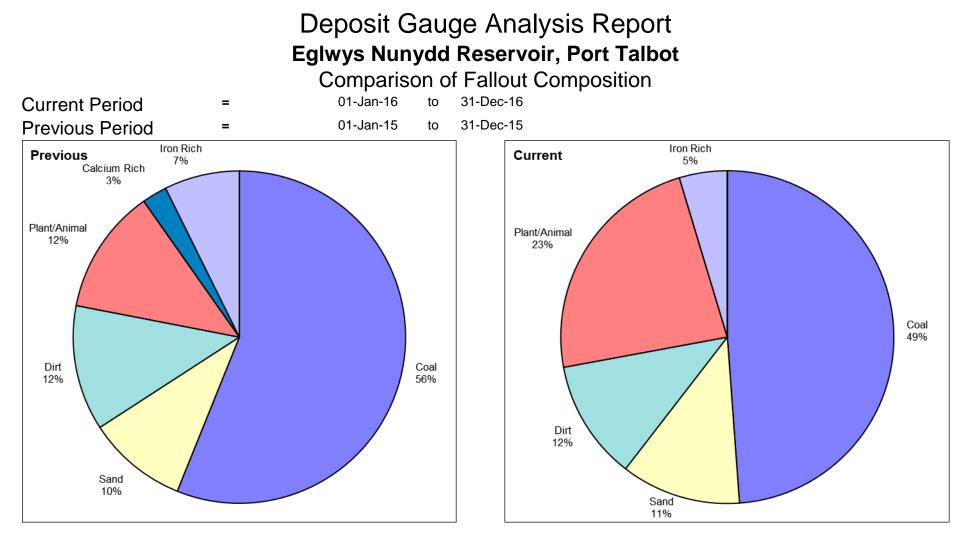
Key


ld	Address
1	Cil Carne Farm, Bryn, Port Talbot
2	41, Parish Road, Cwmgwrach
3	Primary School, Gwaun Cae Gurwen
4	2, Llygad Yr Haul, Glynneath
5	Port Talbot Fire Station, Margam, Port Talbot
6	24, Prince Street, Margam, Port Talbot
7	Eglwys Nunydd Reservoir, Margam, Port Talbot
8	11, Wembley Avenue, Onllwyn
9	Cardonnel Road, Skewen
10	Workingmen's Club, Tairgwaith
11	Little Warren, Aberafan, Port Talbot
12	Dyffryn School, Margam, Port Talbot
13	Ochwr y Waun, Cwmllynfell

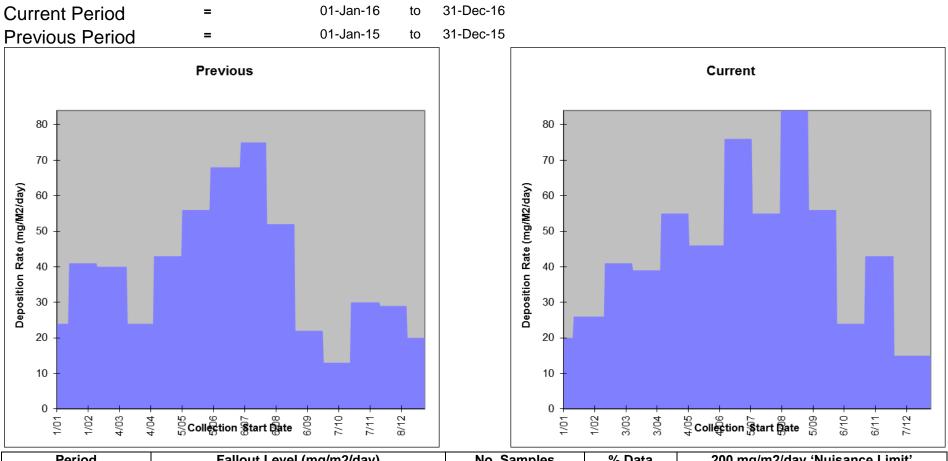

Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	4	0	3	4	0	5	0	2	0
(mg/m2/day)	Previous	6	0	4	5	0	5	0	3	0

Period	Fallout Level	(mg/m2/day)	No. Samples	% Data	200 mg/m2/day 6	Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	17	32	13	100.0	0	0
Previous	24	40	13	100.0	0	0
Change	-7	Decrease -29%				

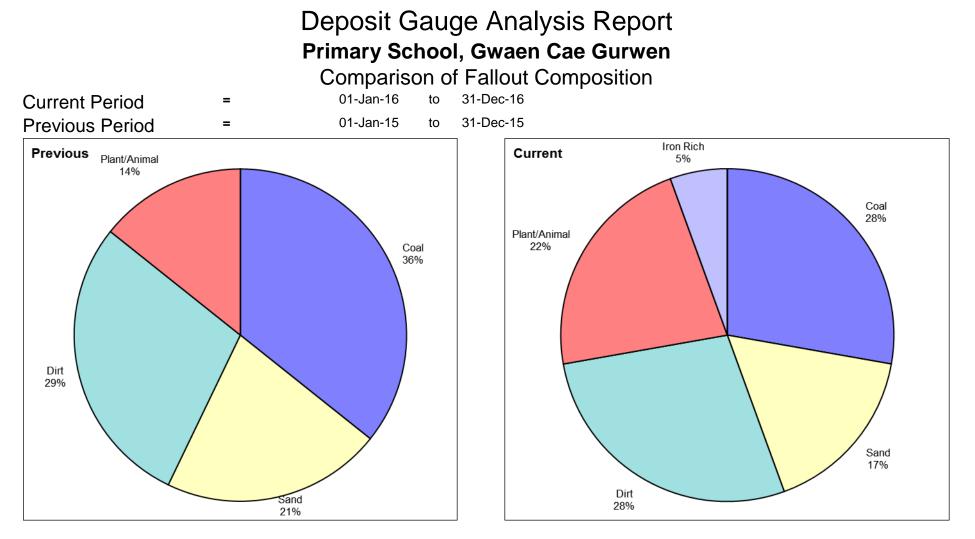

Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	30	0	6	21	0	20	8	67	0
(mg/m2/day)	Previous	59	0	14	41	0	29	5	80	0


Period	Fallout Level	(mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	151	265	13	100.0	41	56
Previous	226	482	12	91.5	46	147
Change	-75	Decrease -33%				

Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	30	0	4	26	0	22	2	68	0
(mg/m2/day)	Previous	48	0	10	43	0	19	5	91	0

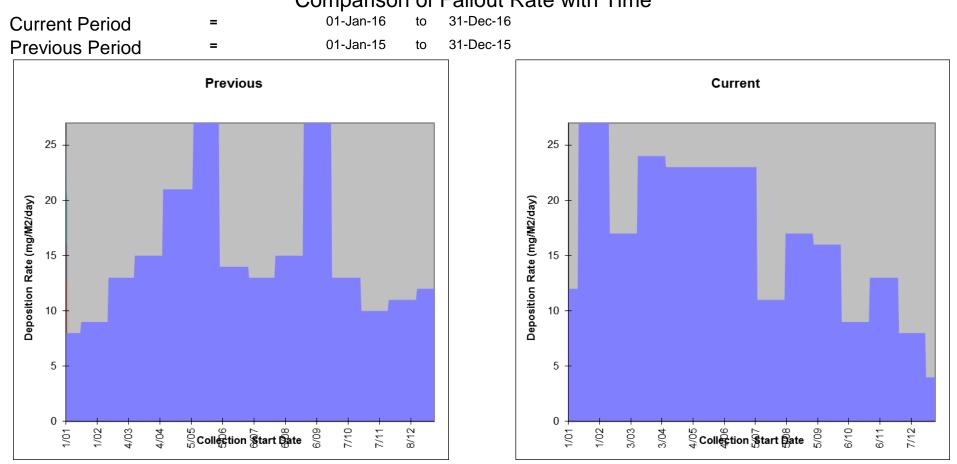


Period	Fallout Leve	l (mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	153	245	11	84.7	0	160
Previous	215	459	13	100.0	30	183
Change	-62	Decrease -29%			· ·	

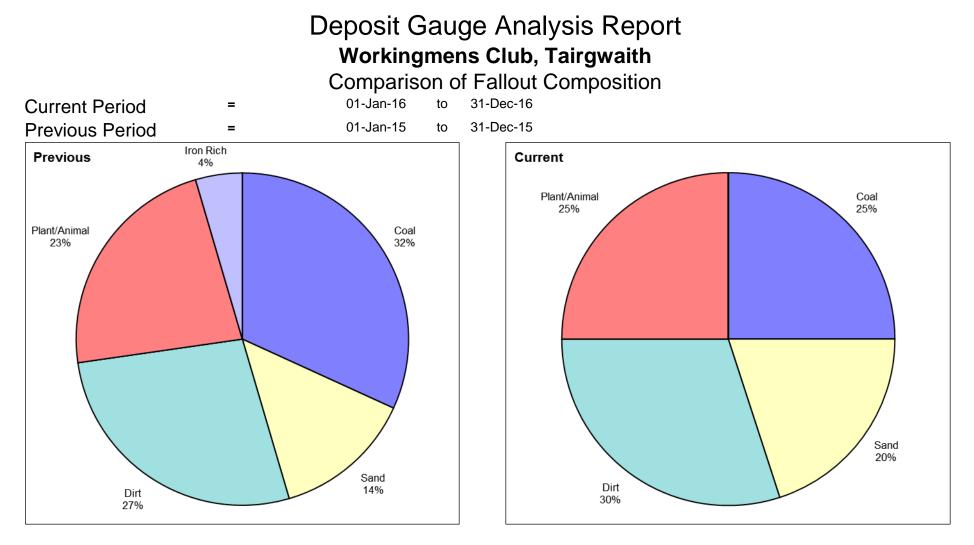


Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	21	0	5	5	0	10	0	2	0
(mg/m2/day)	Previous	23	0	4	5	0	5	1	3	0

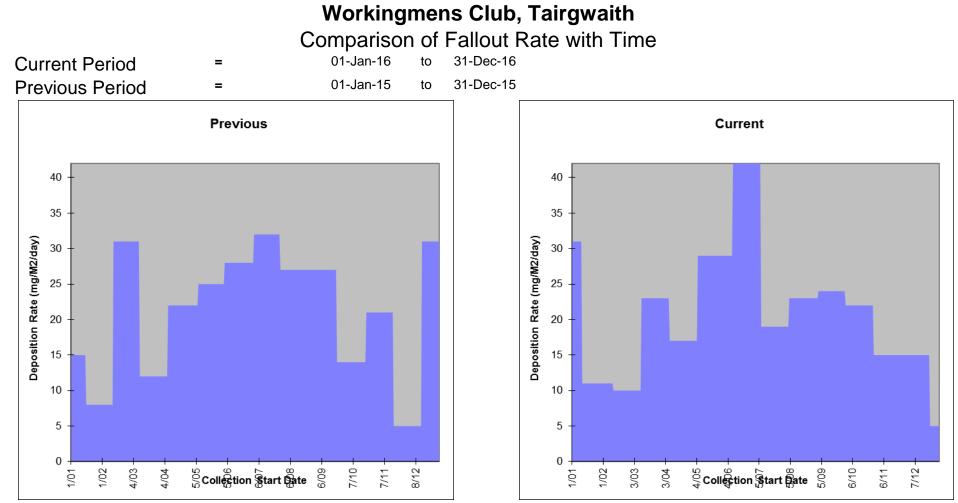
Deposit Gauge Analysis Report Eglwys Nunydd Reservoir, Port Talbot Comparison of Fallout Rate with Time

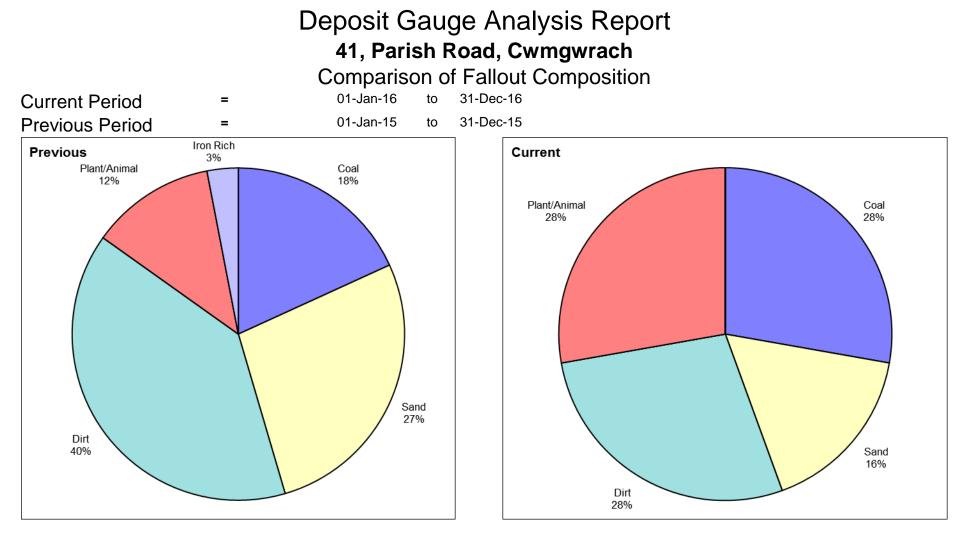


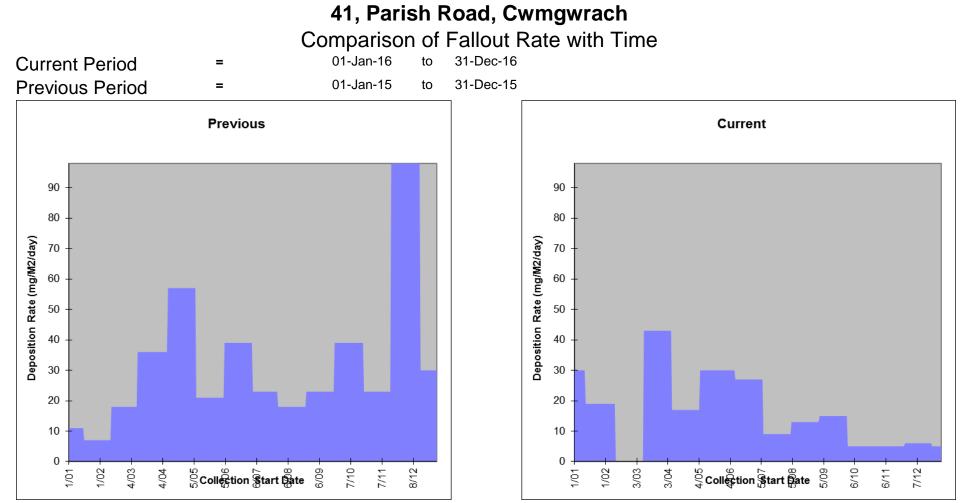
Period	Fallout Level	(mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	45	84	13	100.0	0	0
Previous	40	75	13	100.0	0	0
Change	5	Increase 13%				

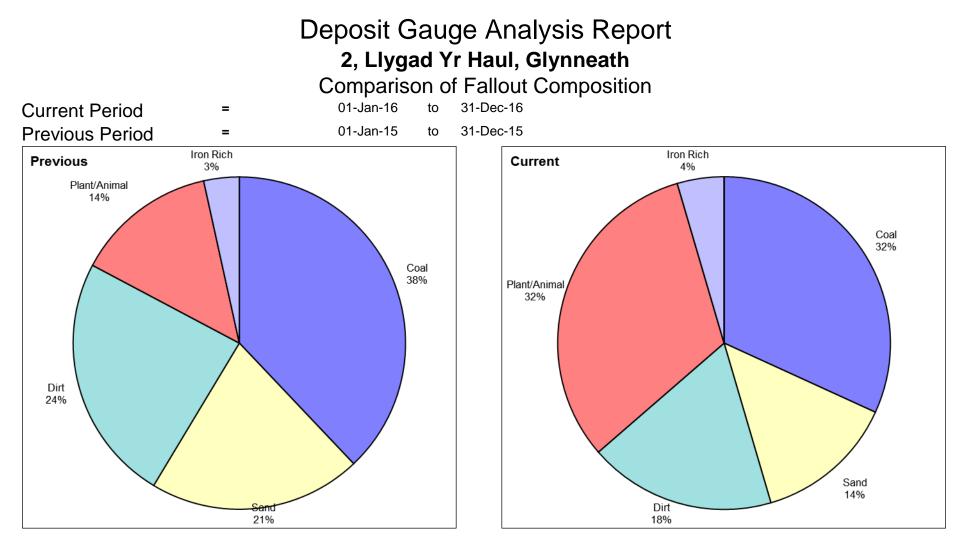


Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	5	0	3	5	0	4	0	1	0
(mg/m2/day)	Previous	5	0	3	4	0	2	0	0	0

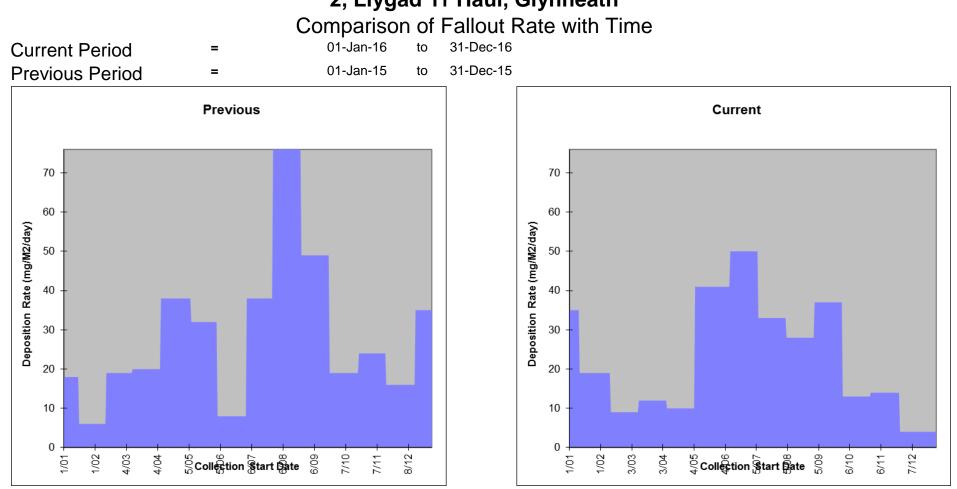

Deposit Gauge Analysis Report Primary School, Gwaen Cae Gurwen Comparison of Fallout Rate with Time


Period	Fallout Level (mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	17	27	13	100.0	0	0
Previous	15	27	13	100.0	0	0
Change	2	Increase 13%				

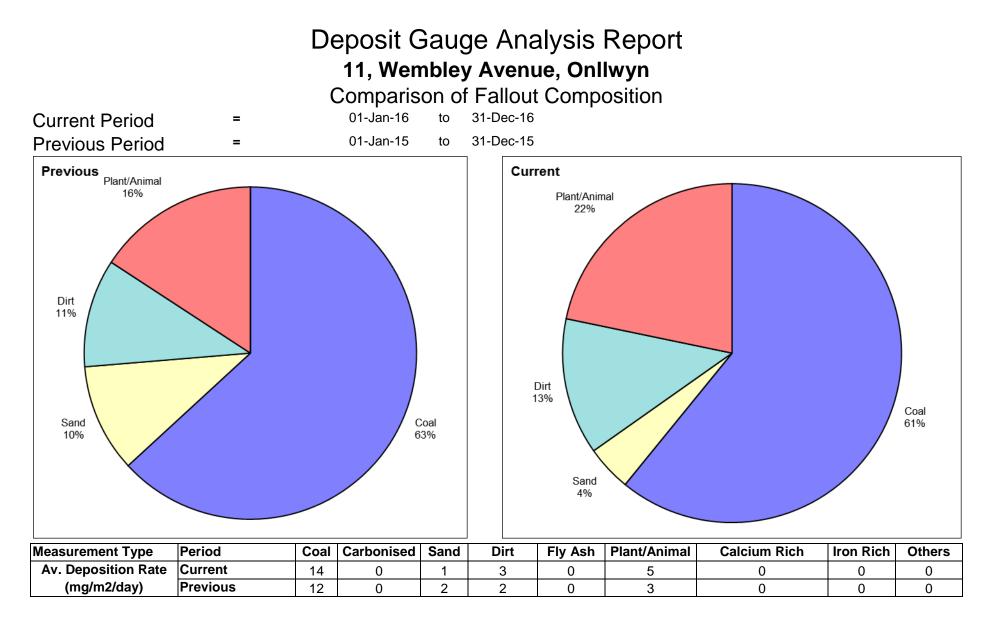

Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	5	0	4	6	0	5	0	0	0
(mg/m2/day)	Previous	7	0	3	6	0	5	0	1	0

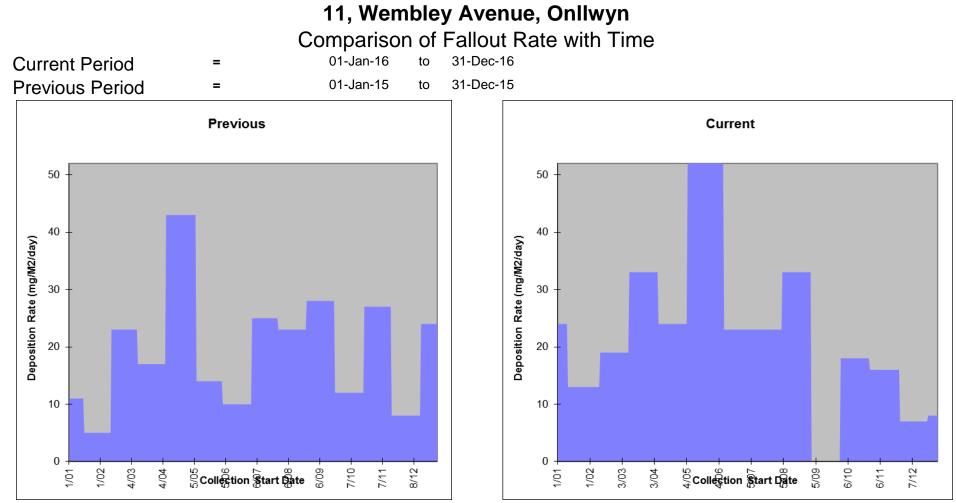

Period	Fallout Level	(mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	21	42	13	100.0	0	0
Previous	21	32	13	100.0	0	0
Change	0	•		-	· · · ·	

Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	5	0	3	5	0	5	0	0	0
(mg/m2/day)	Previous	6	0	9	13	0	4	0	1	0

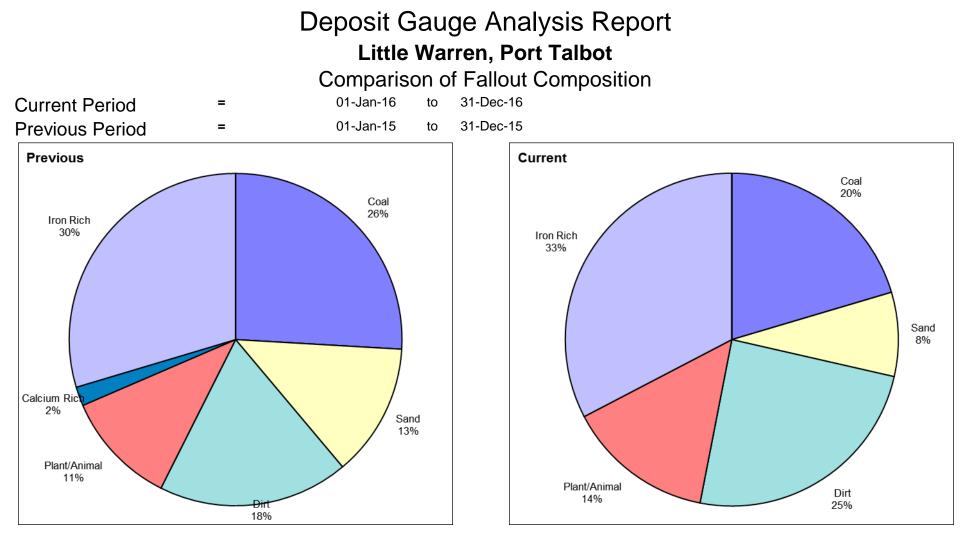


Period	Fallout Leve	(mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	18	43	12	92.3	0	0
Previous	33	98	13	100.0	0	0
Change	-15	Decrease -45%		·		



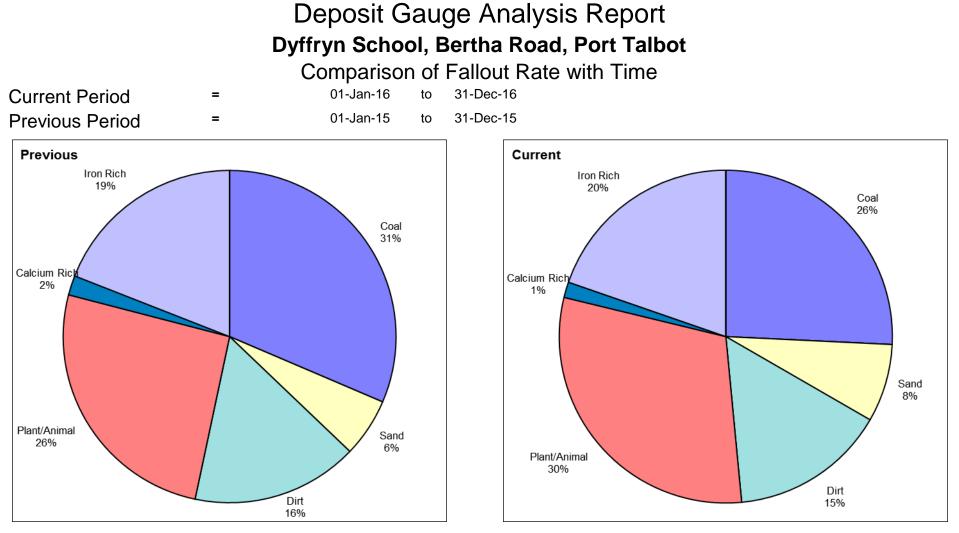

Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	7	0	3	4	0	7	0	1	0
(mg/m2/day)	Previous	11	0	6	7	0	4	0	1	0

Deposit Gauge Analysis Report 2, Llygad Yr Haul, Glynneath



Period	Fallout Level (mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	23	50	13	100.0	0	0
Previous	29	76	13	100.0	0	0
Change	-6	Decrease -21%				

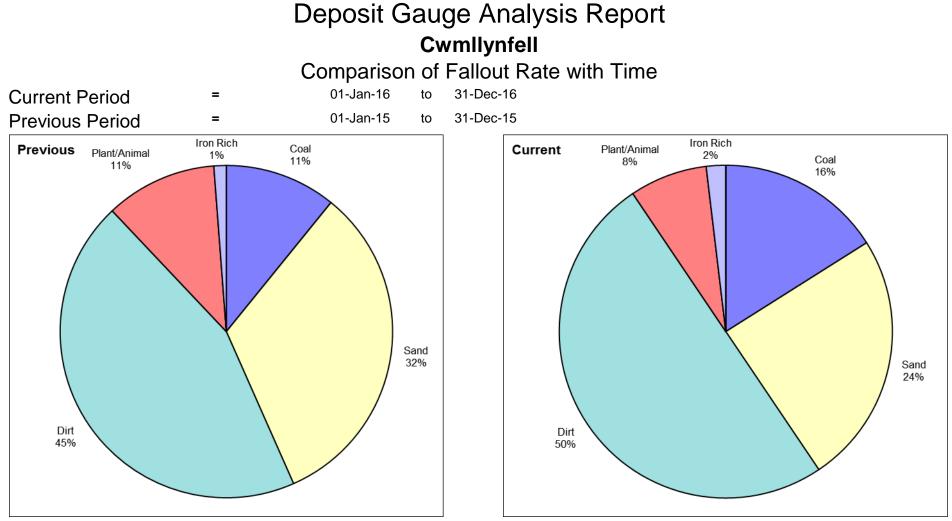
Period	Fallout Level	(mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	24	52	12	92.3	0	0
Previous	19	43	13	100.0	0	0
Change	5	Increase 26%				

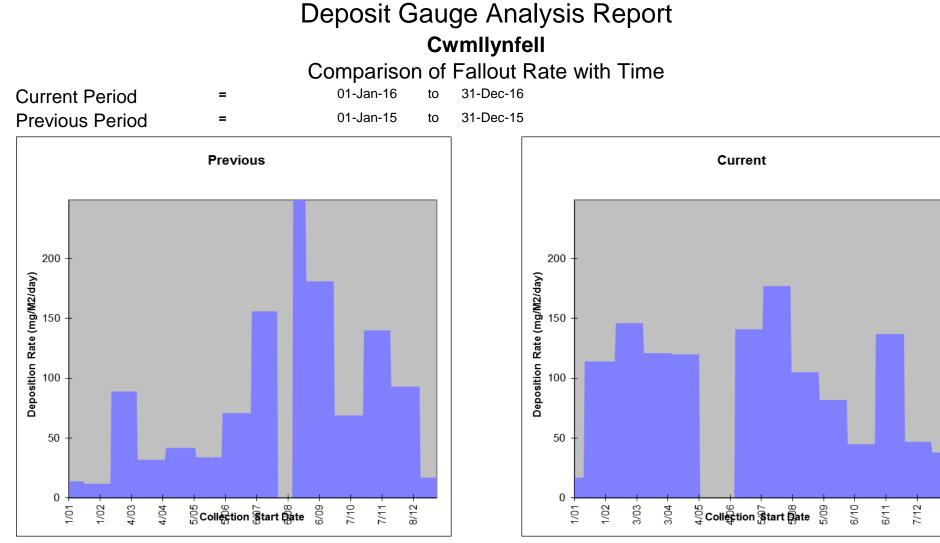


Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	10	0	4	12	0	7	0	16	0
(mg/m2/day)	Previous	14	0	7	10	0	6	1	16	0

Deposit Gauge Analysis Report Little Warren, Port Talbot Comparison of Fallout Rate with Time 01-Jan-16 31-Dec-16 **Current Period** to = 01-Jan-15 31-Dec-15 **Previous Period** to = Previous Current 80 80 70 70 Deposition Rate (mg/M2/day) Deposition Rate (mg/M2/day) 60 60 50 50 40 40 30 30 20 20 10 10 0 0 Collection Start Sate Collection Start Bate 60/2 1/02 4/03 7/11 8/12 1/02 3/03 6/10 6/11 7/12 7/10 10 4/04 3/04 5

Period	Fallout Level	(mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	51	85	13	100.0	0	0
Previous	54	81	13	100.0	0	0
Change	-3	Decrease -6%				


LAQM Progress Report 2016


Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	17	0	5	10	0	20	1	13	0
(mg/m2/day)	Previous	33	0	6	17	0	27	2	20	0

Deposit Gauge Analysis Report Dyffryn School, Bertha Road, Port Talbot Comparison of Fallout Rate with Time 01-Jan-16 31-Dec-16 **Current Period** to = 01-Jan-15 31-Dec-15 **Previous Period** to = Previous Current 200 200 Deposition Rate (mg/M2/day) Deposition Rate (mg/M2/day) 150 150 100 100 50 50 0 0 Collection Start Bate Collection Start Bate 7/12 -1/02 7/10 8/12 1/02 3/03 6/10 4/03 5/09 10 4/04 7/11 3/04 10 6/11

Period	Fallout Level	(mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	65	124	13	100.0	0	0
Previous	104	248	13	100.0	30	54
Change	-39	Decrease -38%				

Measurement Type	Period	Coal	Carbonised	Sand	Dirt	Fly Ash	Plant/Animal	Calcium Rich	Iron Rich	Others
Av. Deposition Rate	Current	17	0	26	53	0	8	0	2	0
(mg/m2/day)	Previous	9	0	27	37	0	9	0	1	0

Period	Fallout Leve	el (mg/m2/day)	No. Samples	% Data	200 mg/m2/day	'Nuisance Limit'
	Average	Maximum		Capture	Days within 10% of	Days Exceeding
Current	107	177	12	90.4	0	0
Previous	83	249	13	95.8	28	13
Change	24	Increase 29%				

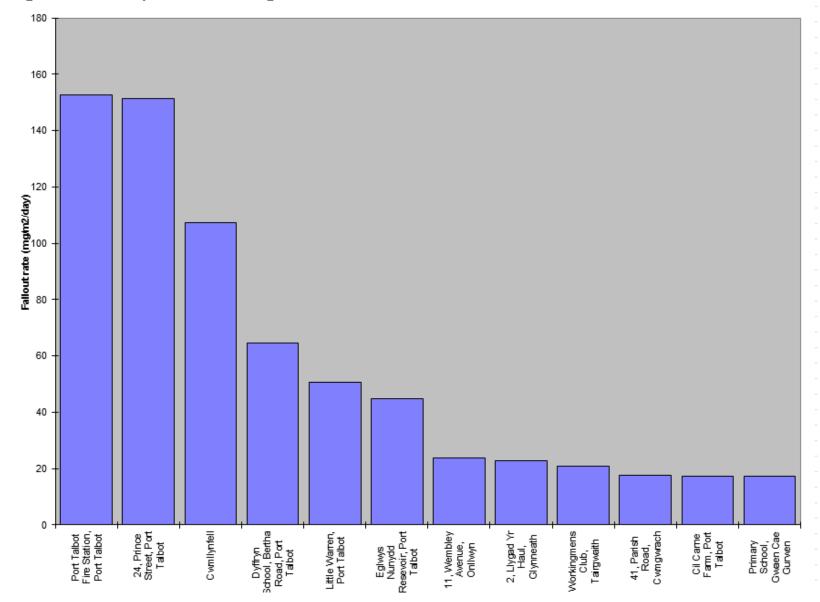


Figure 2.43 Comparison of average fallout rates, 2016

Site Name		ut Level M2/day)	200 mg/M2/day 'Nuisance Limit'					
	Average	Maximum	Days within 10% of	Days Exceeding				
Port Talbot Fire Station, Port Talbot	153	245	0	160				
24, Prince Street, Port Talbot	151	265	41	56				
Cwmllynfell	107	177	0	0				
Dyffryn School, Bertha Road, Port Talbot	65	124	0	0				
Little Warren, Port Talbot	51	85	0	0				
Eglwys Nunydd Resevoir, Port Talbot	45	84	0	0				
11, Wembley Avenue, Onllwyn	24	52	0	0				
2, Llygad Yr Haul, Glynneath	23	50	0	0				
Workingmens Club, Tairgwaith	21	42	0	0				
41, Parish Road, Cwmgwrach	18	43	0	0				
Cil Carne Farm, Port Talbot	17	32	0	0				
Primary School, Gwaen Cae Gurwen	17	27	0	0				

Table 2.17 - Sites ranked by average fallout level (mg/m²/day) 2016

Table 2.18 - Long term deposition rates

	Fallout rate (mg/m2/day)																
Site Name	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Port Talbot Fire Station	120	51	37	70	89	99	111	155	198	98	115	126	106	188	224	215	153
24, Prince Street, Port Talbot	192	135	141	85	86	175	218	219	227	148	133	221	99	199	223	226	151
11, Wembley Avenue, Onllwyn	45	53	67	60	38	26	26	34	53	39	36	21	36	45	31	19	24
Workingmens Club, Tairgwaith	22	23	24	28	30	22	29	13	51	20	33	21	25	30	42	21	21
Eglwys Nunydd, Port Talbot	44	94	68	36	77	67	93	50	51	57	56	53	44	64	63	40	45
Cwmllynfell	43	22	29					20	39	37	49	88	48	126	77	83	107
2, Llygad Yr Haul, Glynneath	33	20	16	18	19	11	15	19	25	18	20	30	23	25	32	29	23
Cardonnel Road, Skewen	24	34	18	21	32	14	24	36	25	48	24		24				
Cil Carne Farm, Port Talbot	29	83	26	30	18	30	29	32	36	22	21	31	22	34	39	24	17
Primary School, GCG	33	31	16	19	33	14	18	20	29	28	25	23	26	28	24	15	17
41, Parish Road, Cwmgwrach	30	28	46	18	20	18	24	21	25	18	22	45	35	37	37	33	18
Little Warren, Port Talbot	66	45	38	50	46	52	70	62	67	59	61	63	65	65	92	54	51
Bryn Hyfred							40	31	32	27	27						
Dyffryn School									100	80	85	73	66	106	95	104	65

2.3.2 Summary of Compliance with AQS Objectives

Neath Port Talbot County Borough Council has examined the results from monitoring in the Taibach Margam area.

Although concentrations within the AQMA did not exceed the short-term air quality objective for PM_{10} at Port Talbot Fire Station during 2016, they did during the previous year and the AQMA should therefore remain.

Concentrations outside of the AQMA are all below the air quality objectives at relevant locations, therefore there is no need to proceed to a Detailed Assessment.

3 New Local Developments

3.1 Road Traffic Sources

No new sources have been identified.

3.2 Other Transport Sources

No new sources have been identified.

3.3 Industrial Sources

No new sources have been identified.

3.4 Commercial and Domestic Sources

No new sources have been identified.

3.5 New Developments with Fugitive or Uncontrolled Sources

No new sources have been identified.

Neath Port Talbot County Borough Council confirms that there are no new or newly identified local developments which may have an impact on air quality within the Local Authority area, which have not been considered in previous reports.

Neath Port Talbot County Borough Council confirms that all the following have been considered:

- Road traffic sources
- Other transport sources
- Industrial sources
- Commercial and domestic sources
- New developments with fugitive or uncontrolled sources.

4 Local / Regional Air Quality Strategy

The Council's air quality strategy (AirWise) was first drawn up in 2000 and was subsequently revised in 2006 and 2013. The latest version of the document can be found here:

http://www.npt.gov.uk/default.aspx?page=4055

Progress being taken towards implementation of the strategy is contained within strategy document.

It is proposed to next review the strategy in 2019.

5 Planning Applications

21 planning applications were referred for comments on grounds of air quality. The majority were considered to have negligible impact. Details regarding other sites are shown below.

Application number P2016/0949 relates to a 40 MW wood fired power station at Margam, which was previously considered during 2014. The air quality assessment showed that no air quality objectives or environmental assessment levels (EALs) will be breached as a consequence of the development. Planning permission was granted in February 2017.

Application number P2016/1022 dealt with the demolition and redevelopment of Dyffryn School, Margam. The air quality impact was assessed in accordance with the IAQM guidance. Suitable mitigation measures are to be adopted and PM_{10} and nuisance dust monitoring will continue at this site throughout. Planning permission was granted in February 2017.

Application number P2016/0657 concerned the demolition and redevelopment of Glanafan Comprehensive School, Port Talbot. It was recommended that a suitable Dust Management Plan be agreed with the Council with appropriate mitigation measures. Planning permission was granted in March 2017.

Application number P2016/0540 relates to a 9.1 MW short term operating reserve power station (STOR) at Maesgwyn above Glynneath. Dispersion modelling has been undertaken to predict the impacts associated with stack emissions from the diesel engines at the site. Air quality objectives are not predicted to be breached and impacts on NO₂, PM₁₀ and CO were negligible. Planning permission was granted in October 2016.

Application number P2016/0749 concerned the Abernedd CCGT gas fired power station, which consists of two phases, 435 MW in stage one, increasing to a total of 870 MW on completion of stage two. Dispersion modelling was carried out, which predicted that no air quality standards would be breached. However, the impact upon the short-term air quality objective for NO₂ was predicted to be significant for the CCGT option. A limit on the operating hours of the CCGT could address this.

6 Air Quality Planning Policies

The Council adopted the LDP on 27th January 2016. The extract below captures all relevant policies in respect of air quality / pollution, namely:

- Strategic Policy SP16 Environmental Protection;
- Policy EN8 Pollution and Land Stability; and
- Policy EN9 Developments in the Central Port Talbot Area.

Subsequently in October 2016, the Council adopted a number of Supplementary Planning Guidance (SPG) documents to support the LDP, which set out more detailed topic or site specific guidance on the way in which the policies of the LDP will be applied in particular circumstances or areas. Supplementing the three LDP policies referred to above, the 'Pollution' SPG provides detailed information about pollution issues in Neath Port Talbot and sets out the relevant matters that will need to be taken into consideration when developments are being planned. While only policies in the LDP have special status in the determination of planning applications, the SPG will be taken into account as a material consideration in the decision making process.

LDP (2011-2026) Extract

Environmental Protection

5.3.38 Strategic Policy SP16 Environmental Protection

Policy SP16 Environmental Protection

Air, water and ground quality and the environment generally will be protected and where feasible improved through the following measures:

- 1. Ensuring that proposals have no significant adverse effects on water, ground or air quality and do not significantly increase pollution levels;
- 2. Giving preference to the development of brownfield sites over greenfield sites where appropriate and deliverable;
- 3. Ensuring that developments do not increase the number of people exposed to significant levels of pollution.

LDP Objectives: OB 2, OB 16 and OB 17

5.3.39 The quality of the environment and the basic natural needs that it provides for are of great importance for human health and well-being, with the potential to affect quality of life in fundamental ways. The legacy of past activities in the area, mainly relating to heavy industry, coupled with present day industry, transport and development pressures all have impacts on the environment which need to be taken into account and addressed where possible. Air quality, ground contamination and stability and the quality of water resources can all affect and be affected by development proposals in the Plan, together with levels of light pollution and noise

levels. The Plan strategy is to protect and improve the environment as far as possible, and Policy SP16 sets out the approach that will be taken.

5.3.40 In relation to environmental pollution, there is a wide range of control and permitting systems and regimes which developments and operations have to comply with that are separate from the Town and Country Planning system. These requirements cannot be duplicated in the Plan or in planning control, but have been taken into account in the development of Plan proposals and policies and will need to be reflected in planning decisions.

5.3.41 Policy EN8 Pollution and Land Stability

Policy EN8 Pollution and Land Stability

Proposals which would be likely to have an unacceptable adverse effect on health, biodiversity and/or local amenity or would expose people to unacceptable risk due to the following will not be permitted:

- Air pollution;
- Noise pollution;
- Light pollution;
- Contamination;
- Land instability;
- Water (including groundwater) pollution.

Proposals which would create new problems or exacerbate existing problems detailed above will not be acceptable unless mitigation measures are included to reduce the risk of harm to public health, biodiversity and/or local amenity to an acceptable level.

5.3.42 Pollution of all types can cause significant damage to human health, biodiversity, quality of life and residential amenity and Policy EN8 is intended to ensure that developments will not exacerbate existing problems, cause new problems or result in more people being routinely exposed to unacceptable pollution levels of any type. The policy refers to unacceptable effects or risk, and the interpretation of this will depend on the type of pollution being considered and likely effects.

5.3.43 In relation to air quality, objectives are set for a range of pollutants⁽²³⁾ and Neath Port Talbot's air quality is measured against these objectives at a range of sites across the County Borough. This monitoring has identified areas of concern in some central urban areas, with exceedances in the Margam / Taibach area leading to the declaration of an Air Quality Management Area (AQMA) in 2001.

5.3.44 Development proposals that could potentially result in or contribute to breaches of any air quality objective will be required to show (through modelling exercises or other appropriate technical information, including taking into account cumulative impacts) that this will not occur. While the provisions would apply throughout the County Borough, developments in the vicinity of the AQMA that would result in additional direct emissions to the atmosphere or could have indirect effects such as through generating significant additional traffic are an example of such a

proposal. If this requirement cannot be met, either with or without mitigation measures, the proposal will not be acceptable under the terms of the policy.

5.3.45 In the central Port Talbot area in particular, operations during the construction phase of developments have the potential to result in exceedances of air quality objectives relating to particulates. This may depend on local weather or atmospheric conditions and the type of operations being undertaken. Policy EN9 sets out specific requirements for development in the central Port Talbot area and further information on this topic will be provided in Supplementary Planning Guidance.

5.3.46 In relation to noise, potentially noisy proposals should not be located close to sensitive uses (such as hospitals, schools and housing) and new noise-sensitive developments should not be located near to existing noisy uses (including industry and existing or proposed transport infrastructure) unless it can be shown that adverse effects can be dealt with through mitigation measures incorporated into the design. Where noise levels are likely to be a significant issue, developers may be required to provide information to show that no nuisance is likely to be caused through increased noise levels at sensitive locations if the development proceeds. Policy EN10 sets out policy relating to designated Quiet Areas.

5.3.47 Light pollution can be an issue where it has potential adverse effects on the natural or historic environment, on people's health and amenity or on wildlife and habitats. These concerns will need to be balanced against the need to enhance safety and security and to enable sport, recreation and other activities to take place. Where lighting proposals have the potential to cause adverse effects, mitigation measures will be required to ensure that their impact is minimised.

5.3.48 Some of the Plan's brownfield allocations and proposals incorporate land that is contaminated due to past industrial uses. In many cases remediation measures have been or are being undertaken as part of the development process. In other cases, where contamination is likely or is found to be present, information will be required to show the level and type of contamination present, and proposals for remediation and mitigation to show that no adverse effects will be caused at any stage of development within or outside the site. In addition, developments and operations involving scrub clearance and soil removal off-site can have implications for the spread of invasive species, some of which (such as Japanese Knotweed and Himalayan Balsam) are subject to the Natural Resources Wales' licence control measures as part of the Environmental Protection Act (1990).

5.3.49 In cases where there is evidence that a site may be unstable, or that development may cause stability issues, developers may be required to undertake specialist investigation or assessment to show that the development can proceed safely and without having adverse effects. However, in such cases the responsibility and subsequent liability for the safe development and secure occupancy of the site rests with the developer and/or landowner.

5.3.50 Developments will be expected to minimise any adverse effects on water quality, and additional information may be required in cases where there may be issues relating to existing poor water quality or a development has the potential to cause pollution. Developments will be required to ensure that no pollution is caused through drainage.

5.3.51 Policy EN9 Developments in the Central Port Talbot Area

Policy EN9 Developments in the Central Port Talbot Area

Developments in the central Port Talbot area that could result in breaches of air quality objectives during their construction phase, will be required to be undertaken in accordance with a Construction Management Plan submitted as part of the planning process and agreed by the Council.

5.3.52 The construction of major developments in the central Port Talbot Area, including (but not limited to) those within the Harbourside SRA, may potentially result in breaches of air quality objectives in the surrounding area (including within the Margam/Taibach AQMA). The main risk relates to an increase in atmospheric particulates resulting from construction activities. Any such developments will consequently be required to submit a Construction Management Plan detailing measures to be taken to avoid this possibility. The Construction Management Plan should identify the construction operations that could cause air quality impacts and measures to prevent such impacts arising. These may include measures to minimise as far as possible the generation of dust, the modification or phasing of the more polluting activities and the suspension of any polluting activities at times of particular air pollution risk. Further details concerning these requirements will be set out in Supplementary Planning Guidance.

7 Local Transport Plans and Strategies

The Regional Transport Plan is the result of joint working between the four local authorities (Carmarthenshire, Neath Port Talbot, Swansea and Pembrokeshire) in south west Wales. It replaces the individual local transport plans previously adopted by the 4 councils. As well as acting as a bidding document for major transport schemes it will shape transport policy in the region for the period 2015 -2020 and beyond. Details can be found on the following web page:

http://www.npt.gov.uk/default.aspx?page=2808

8 Implementation of Action Plans

The Air Quality Action Plan was reviewed and updated in 2012. The updated document can be found here <u>http://www.npt.gov.uk/pdf/aqap2012.pdf</u>.

Progress made with the action plan measures during 2016 is shown in the following table.

Table 9.1 - Action Plan Progress

No.	Measure	Progress in Last 12 Months
A1	Multi agency interaction	 4 X PM₁₀ Data team meetings during 2016. 0 X PM₁₀ Regulator's meeting. 1 X PM₁₀ Steering Group meeting. Monitoring results were discussed as were plans for further work including studies by King's College and Birmingham University. All pollution and weather measurements continue and information is shared with partners on request. Our industrial alerts system is used by operators on the steelworks site to try to prevent exceedance days from happening.
A2	Dust reduction programme at Tata site	 General Tata Steel, Harsco Metals and Cambrian Stone permits reviewed to implement Iron & Steel BAT Conclusions (BATc) requirements Permit emission limit values (ELVs) have been tightened to meet the I&S BATc and reduce releases from the steelworks Tata KPI for nuisance dust fallout: operator intervention threshold lowered from 40ug/m3 to 30ug/m3 of monitored PM10 Ongoing review/rationalisation of Tata's on-site ambient PM10 monitor network Tata Drive to Minimise Dust campaign – focusing on fugitive dust from vehicle movements and un-sheeted loads Overarching steelworks Air Quality Management Plan (AQMP) revised and agreed as Revision 8 (Feb 2016) New AQMP audit template developed and rolled out by Tata Coke ovens Ongoing Coke Ovens improvements to meet the I&S BAT Conclusions requirements ELVs tightened to implement BATc for door, oven and associated equipment fume leakage

No.	Measure	Progress in Last 12 Months
No.	Measure	 Major ongoing works to renew seals for coke oven doors, charge holes, ascension pipes, spigots and caps Rate of renewal is limited by difficult working environment (live coke ovens) and need to maintain thermal balance and integrity of batteries New methods now approved and in place for monitoring coke ovens fugitive releases. More frequent monitoring and performance data Raw materials Stockyards surfacing work on hold during Tata UK sale process Impact of Tata UK sale process on raw material supply and homogeneity in 2016 Introduction of 'plume index score' to stockyards shift reports Inspection of fugitive dust control and suppression measures Review of Stockyards works area AQMP Review of road sweeping and bowsering routes
		 requirements ELVs tightened to implement BATc for main stack and secondary de-dust stack emissions Major repair and refurbishment of the main waste gas system (ESPs, wind mains, ducting) Optimisation of ESP electrical fields to improve dust capture performance Refurbishment and replacement of ESP chain conveyor systems (ESP dust) Review of sinter conveyor dust suppression system (foam) performance Ongoing replacement of foam system metal pipework with plastic components to reduce biological fouling Installation of biocide dosing system

No.	Measure	Progress in Last 12 Months
No.	Measure	 Progress in Last 12 Months Ironmaking ELVs tightened to implement BATc for casting house emissions Scrutiny and review of blast furnace bleeder valve releases in 2016 Adjustments to blending and charging processes to mitigate the impact of variable raw materials Review of stockhouse screens and dust suppression system performance Steel & Slab Ongoing BOS plant improvements to meet the I&S BAT Conclusions requirements ELVs tightened to implement BATc for secondary fume extraction emissions Upgrade and optimisation of the BOS Plant Secondary Fume Extraction Plant (FEP) – Fans 4, 5 & 6 Upgrade and optimisation of the BOS Plant Hot Metal Pouring Bay FEP – Fans 3 & 3A Investment in a new travelling hood at the Hot Metal Pouring Bay BOS converter slop detection improvements including cameras Further development of the BOS converter slop risk/prediction model (ELVIS) Optimising converter charging practices e.g. coarse sinter instead of lump ore, oxygen lance height analysis Review of Steel & Slab works area AQMP
A3	Planning Policies	 Contractors Review of contractor AQMPs (Harsco, Cambrian Stone, Hargreaves) Review of factors that could influence emissions from iron pouring and plating activities Inspection of slag and granulate storage areas and volumes LDP issued.
A3 A4	Tree Planting	Urban Trees Project is now complete.

No.	Measure	Progress in Last 12 Months		
A5	Transport infrastructure (PDR)	Project now complete.		
A6	Train haulage emissions	There were no complaints about dusty trains in Port Talbot during 2016.		
A7	NPT permitting in vicinity of steel works	NPT continues to regulate Civil & Marine Slag Cement in accordance with the permit and BAT.		
A8	Travel Plans	NPT CBC are in the process of implementing their reviewed Travel Plan across their sites, reflecting progress made towards sustainable travel planning. Although plans are still in place to set up a Travel Forum in the Baglan Bay area, NPT CBC liaise with representatives from businesses, organisations and transport operators within the area to ensure sustainable, accessible and active travel opportunities are in place to meet the requirements of the area. This is being monitored to reflect ongoing growth and development.		
A9	School Travel Plans	A total of 57 schools in the County Borough have travel plans, with the recent addition of Ysgol Bae Baglan and Eastern Primary School.		
A10	Domestic Bonfires	Engagement with the public on air quality issues continues.		
A11	Industrial Fires	Natural Resources Wales keeps a list of permitted sites with combustible wastes, which are risk categorised. NRW also investigates illegal sites. NPTCBC has taken proactive measures together with other agencies to prevent tyre fires.		
A12	Hill Fires	A fire safety education program is in place with a named officer for the Neath Port Talbot area of Mid and West Wales Fire Service.		
A13	Increased street sweeping	The service is still available, but there has been no cause to call upon it in 2016.		
A14	Public and industrial air alerts	The industrial air alerts system is used by 147 subscribers. The trial of the public system is complete and there are currently no plans to continue with the service.		

9 **Conclusions and Proposed Actions**

9.1 Conclusions from New Monitoring Data

The long-term Air Quality Objectives for nitrogen dioxide were not breached at any locations in Neath Port Talbot. Decreasing concentrations of NO_2 measured by the continuous analyser at Pontardawe were enough to justify removal of the analyser from this location. This decrease in NO_2 levels is probably directly related to the closure of the Post Office some time ago.

Continuous measurements of NO₂ at Victoria Gardens also show a decreasing trend, but there are currently no plans to stop monitoring there.

Neither the long-term nor the short-term Air Quality Objectives for PM_{10} were breached in Port Talbot. However, the Taibach/Margam AQMA will continue to remain in force.

There were no exceedances of Air Quality Objectives for sulphur dioxide (SO₂), lead (Pb) or carbon monoxide (CO).

9.2 Conclusions relating to New Local Developments

No new local developments have been identified that require more detailed consideration in the next Updating and Screening Assessment.

9.3 Other Conclusions

Fine particulates of less than 2.5 microns in size $(PM_{2.5})$ easily complied with the EU Target which was to be complied with by 2015.

Ozone is not covered by Local Air Quality Management because trans-boundary pollution can have a significant effect upon local results. Neath Port Talbot, like other parts of the country, experiences significant numbers of exceedances of the UK air quality standard. The trend is one of gradual improvement over time.

Concentrations of polyaromatic hydrocarbons exceed the UK Air Quality Objective of 0.25 ng/m^3 and are only marginally less than the EU Target value of 1 ng/m³. It is likely that the EU Target value will be breached if the concentrations continue to increase at the present rate.

Arsenic and cadmium easily comply with the EU Target, both in Port Talbot and Pontardawe.

Nickel concentrations comply with the EU Target at all locations in Neath, Port Talbot and Pontardawe, except Tawe Terrace and Pontardawe Leisure Centre. The maintenance of abatement equipment will be made a priority for regulation of Wall Colmonoy during 2017.

The highest rates of fallout of large particles (nuisance dust) were measured in Port Talbot at Port Talbot Fire Station and Prince Street. However, fallout rates at these locations were about 30% lower than the previous year.

None of the 21 planning applications considered on grounds of air quality were considered to pose a risk to compliance with air quality objectives.

9.4 **Proposed Actions**

There are no plans to revoke or modify the Taibach/Margam AQMA, given the breach of the short-term objective for PM_{10} .

The next actions to be taken will be to:

• Submit a LAQM Updating and Screening Assessment report for the calendar year of 2017.

Appendices

Appendix A: QA/QC Data

Diffusion Tube Bias Adjustment Factors

 NO_2 diffusion tubes are sourced from the Environmental Scientifics Group and are prepared using 50% TEA in acetone. The bias adjustment factor of 0.71 was used for 2016, as derived from a co-location study at two locations.

Factor from Local Co-location Studies (if available)

Continuous analysers were co-located with triplicate diffusion tubes at Port Talbot Fire Station and Victoria Gardens.

Defra has provided a spreadsheet to facilitate the calculation of local bias adjustment factors. The spreadsheet used can be found at this location:

http://laqm.defra.gov.uk/bias-adjustment-factors/local-bias.html

Cł	Checking Precision and Accuracy of Triplicate Tubes													
	Diffusion Tubes Measurements								<i>v</i> ,	Fron				
			Diffi	ISION I U	bes Mea	surements	6	Coofficient			Automa	tic Method	Data Quali Tubes	_
<u>io</u>	Start Date	End Date	Tube 1			Triplicate	Standard	Coefficient of Variation	95% CI		Period	Data Capture	Precision	Automatic Monitor
Period	dd/mm/yyyy	dd/mm/yyyy	µgm ⁻³	µgm ⁻³	µgm ⁻³	Mean	Deviation	(CV)	of mean		Mean	(% DC)	Check	Data
	06/01/2016	03/02/2016	29.9	29.3	29.1	29	0.4	1	1.0		21	100	Good	Good
2														
3	03/03/2016	30/03/2016	19.0	21.0	22.6	21	1.8	9	4.5		19.4	93	Good	Good
4	30/03/2016	27/04/2016	21.8	20.7	20.6	21	0.7	3	1.7		15	100	Good	Good
5	27/04/2016	25/05/2016	24.6	23.3	24.9	24	0.9	4	2.1		16	100	Good	Good
6	25/05/2016	29/06/2016	18.1	18.6	18.0	18	0.3	2	0.8		14	100	Good	Good
7	29/06/2016	27/07/2016	13.2	13.4	13.7	13	0.3	2	0.6		10	93	Good	Good
8	27/07/2016	24/08/2016	15.5	14.9	15.5	15	0.3	2	0.9		11	100	Good	Good
э	24/08/2016	28/09/2016	18.7	15.7	18.0	17	1.6	9	3.9		14	100	Good	Good
10	28/09/2016	26/10/2016	21.7	23.2	21.5	22	0.9	4	2.3		16	96	Good	Good
11	26/10/2016	30/11/2016	27.4	21.3	19.0	23	4.3	19	10.8		22.4	100	Good	Good
12	30/11/2016	04/01/2017	37.3	33.7	38.3	36	2.4	7	6.0		26.6	100	Good	Good
13														
lt is	necessary to	have results	for at lea	st two tu	bes in ord	ler to calcul	ate the preci	ision of the me	easuremen	ts	Overal	l survey>	Good precision	Good Overall
Sit	e Name/ ID:	Dort Tal	bot Fire	Station 3	016	I I	Precision	11 out of 11	periode h	auo a C	Vemallor	than 20%	(Check avera	
JIL	e Name/ ID.	Futta	DOLLING	Station 2	2010		Frecision	Troat of Th	penious na	ave a c	v smaner	than 20%	from Accuracy	
	Accuracy	(with	95% con	fidence	interval)		Accuracy	(with	95% conf	idence	interval)			
	without pe	riods with C	V larger	than 20	%		WITH ALL	DATA				50%	1	
	Bias calcula	ated using 1	1 period	s of data	1		Bias calculated using 11 periods of data					1		
	B	ias factor A		(0.72 - (1	Bias factor A				ä	1	1
		Bias B	29%	(19% -	39%)			Bias B	29%	(19% -	39%)	₫ 0%	Without CVA-20%	With all data
	Diffusion T	ubes Mean:	22	µgm ^{-s}			Diffusion	Tubes Mean:	22	µgm ⁻³		Lo -25%		
	Mean CV	(Precision):					Mean CV	(Precision):	6			seig active Bias		
	Autor	natic Mean:	17	µqm ⁻³			Auto	matic Mean:	17	µgm ⁻³		ā .50%		
	Data Capt	ure for period					Data Capture for periods used: 98%							
		ubes Mean:		6 - 18)	µgm ^{-s}			Tubes Mean:			µgm ^{-s}		Jaume Taro	a, for AEA
1												Ver	sion 04 - Feb	

Figure A1 – Port Talbot Fire Station - Bias adjustment spreadsheet -

If you have any enquiries about this spreadsheet please contact the LAQM Helpdesk at LAQMHelpdesk@uk.bureauveritas.com

			Diffi	usion Tu	bes Mea	surements	6			Auton	natic Method	Data Qual	-
	Start Date dd/mm/yyyy	End Date dd/mm/yyyy	Tube 1 µgm⁻³	Tube 2 µgm ⁻³	Tube 3 µgm ⁻³	Triplicate Mean	Standard Deviation	Coefficient of Variation (CV)	95% CI of mean	Perio Mear	Capture	Tubes Precision Check	Automati Monitor Data
	06/01/2016	03/02/2016	49.4	49.8	54.0	51	2.5	5	6.3	41.7	100	Good	Good
	03/03/2016	30/03/2016	55.8	54.6	55.3	55	0.6	1	1.5	44.7	89	Good	Good
	30/03/2016	27/04/2016	53.4	55.8	51.2	53	2.3	4	5.7	36.6	100	Good	Good
	27/04/2016	25/05/2016	60.5	63.1	65.9	63	2.7	4	6.7	37	100	Good	Good
	25/05/2016	29/06/2016	59.9	56.2	57.7	58	1.9	3	4.6	35	100	Good	Good
	29/06/2016	27/07/2016	52.3	54.8	53.6	54	1.3	2	3.1	31	100	Good	Good
	27/07/2016	24/08/2016	57.8	56.4	51.7	55	3.2	6	7.9	31	100	Good	Good
	24/08/2016	28/09/2016	52.8	51.5	49.7	51	1.6	3	3.9	33	83	Good	Good
•	28/09/2016	26/10/2016	58.0	69.6	58.8	62	6.5	10	16.1	36	93	Good	Good
	26/10/2016	30/11/2016	65.3	66.3	63.7	65	1.3	2	3.3	42.5	100	Good	Good
:	30/11/2016	04/01/2017	64.5	57.1	62.0	61	3.8	6	9.4	36.6	100	Good	Good
												<u> </u>	<u> </u>
IS	necessary to	have results	for at lea	st two tu	bes in ord	ler to calcul	ate the prec	ision of the m	asuremen	s Ove	rall survey>	Good	Good Overall
ite	Name/ ID:	Ci	imla Roa	d 2016			Precision	11 out of 11	periods ha	ve a CV small	er than 20%	(Check avera	
					_						_	from Accuracy	calculation
	Accuracy		95% con				Accuracy		95% confi	dence interva	<u> </u>		
		riods with C					WITH ALL				50%	, 1 T	1
		ated using 1						lated using 1				i	
	В	ias factor A		4 (0.59 -				Bias factor A		(0.59 - 0.7)	ä		
		Bias B		(42% -	69%)			Bias B		(42% - 69%)	_ f ² %	Without CV-20%	With all data
	Diffusion T	ubes Mean:	57	µgm ^{-s}				Tubes Mean:		µgm ^{-s}	-25 %	6	
	Mean CV	(Precision):	4				Mean C\	(Precision):					
	Autor	natic Mean:	37	µgm ^{-s}			Automatic Mean: 37 µgm ⁻³				ā -509	ــــــــــــــــــــــــــــــــــــــ	
Data Capture for periods used: 97% Data Capture for periods used: 97%							-						

If you have any enquiries about this spreadsheet please contact the LAQM Helpdesk at: LAQMHelpdesk@uk.bureauveritas.com

The locally derived bias adjustment factor of 0.71 is derived from the average of the two sites e.g. (0.64 + 0.77) / 2.

PM Monitoring Adjustment

No PM adjustment was required for PM₁₀ analysers operated by Neath Port Talbot County Borough Council as FDMS TEOMs were used in all cases.

Short-term to Long-term Data adjustment

No NO₂ diffusion tube monitoring sites experienced data capture rates lower than 75% during 2016. Consequently, no long-term data adjustment was necessary.

QA/QC of automatic monitoring

The AURN site is subject to the quality control procedures of the network. Neath Port Talbot County Borough Council staff act as Local Site Operator, carrying out calibrations on an approximately fortnightly basis. There are regular site audits and validation and ratification are carried out by AURN staff prior to dissemination of the data via http://uk-air.defra.gov.uk/.

All PM_{10} analysers are FDMS/TEOMs with C/B driers. No factors are applied to this data during the collection process. All equipment is covered by service and maintenance contracts with suppliers. These contracts provide for 6 monthly servicing and emergency callouts.

Monitoring stations are covered by a QA/QC contract with Ricardo which provides for two site audits per year and QA/QC of the data which is polled by AEAT and disseminated on the Welsh Air Quality Forum website. Data is subject to a similar QA/QC standard as the AURN.

QA/QC of diffusion tube monitoring

ESG have been shown to have good performance in respect of recent Wasp scheme analyses. Details of the most recent Wasp results can be viewed at the following Internet location:

https://laqm.defra.gov.uk/diffusion-tubes/qa-qc-framework.html

<u>, , , , , , , , , , , , , , , , , , , </u>	IUIX D. Kaw	NO2 Data
Site Id	MonthYear	NO ₂ Conc ug
1	Mar-16	42.6
1	Apr-16	47.0
1	May-16	56.8
1	Jun-16	49.7
1	Jul-16	45.5
1	Aug-16	41.7
1	Sep-16	48.6
1	Oct-16	44.5
1	Nov-16	61.2
1	Dec-16	65.1
3	Mar-16	20.2
3	Apr-16	16.9
3	May-16	21.9
3	Jul-16	12.5
3	Aug-16	15.0
3	Sep-16	17.5
3	Oct-16	19.8
3	Nov-16	23.4
3	Dec-16	31.1
4	Jan-16	36.3
4	Mar-16	40.7
4	Apr-16	36.1
4	May-16	39.2
4	Jun-16	34.0
4	Jul-16	28.6
4	Aug-16	31.3
4	Sep-16	36.1
4	Oct-16	40.5
4	Nov-16	43.8
4	Dec-16	52.2
5	Jan-16	42.2
5	Mar-16	49.9
5	Apr-16	42.0
5	May-16	35.9
5	Jun-16	38.8
5	Jul-16	33.4
5	Aug-16	29.6
5	Sep-16	33.4
5	Oct-16	39.7
5	Nov-16	52.0
5	Dec-16	43.8
7	Jan-16	46.3

Appendix B: Raw NO₂ Data

Site Id	MonthYear	NO ₂ Conc ug
7	Mar-16	38.2
7	Apr-16	39.0
7	May-16	41.1
7	Jun-16	34.8
7	Jul-16	33.0
7	Aug-16	32.8
7	Sep-16	35.3
7	Oct-16	37.2
7	Dec-16	53.0
8	Jan-16	40.5
8	Mar-16	39.6
8	Apr-16	38.8
8	May-16	44.4
8	Jun-16	31.7
8	Aug-16	30.5
8	Sep-16	33.8
8	Oct-16	36.7
8	Nov-16	46.5
8	Dec-16	47.0
9	Jan-16	45.5
9	Mar-16	30.1
9	Apr-16	37.6
9	May-16	41.3
9	Jun-16	33.6
9	Jul-16	30.3
9	Aug-16	30.9
9	Sep-16	34.2
9	Oct-16	38.2
9	Dec-16	51.1
10	Jan-16	40.5
10	Mar-16	38.6
10	Apr-16	27.1
10	May-16	44.2
10	Jun-16	36.1
10	Jul-16	32.3
10	Aug-16	32.8
10	Sep-16	32.8
10	Oct-16	38.2
10	Dec-16	47.6
11	Jan-16	42.2
11	Mar-16	40.9
11	Apr-16	38.2
11	May-16	42.0
11	Jun-16	32.6

Site Id	MonthYear	NO₂ Conc ug
11	Jul-16	32.3
11	Aug-16	26.9
11	Sep-16	31.7
11	Oct-16	37.1
11	Nov-16	47.0
11	Dec-16	53.6
12	Jan-16	41.3
12	Mar-16	43.8
12	Apr-16	37.8
12	May-16	34.9
12	Jun-16	29.6
12	Jul-16	27.6
12	Aug-16	28.6
12	Sep-16	31.9
12	Oct-16	32.6
12	Nov-16	50.3
12	Dec-16	48.4
13	Jan-16	39.9
13	Mar-16	39.0
13	Apr-16	39.9
13	May-16	40.7
13	Jun-16	36.7
13	Jul-16	32.3
13	Aug-16	30.9
13	Sep-16	31.7
13	Oct-16	33.6
13	Nov-16	55.1
13	Dec-16	54.9
14	Jan-16	43.6
14	Mar-16	45.7
14	Apr-16	44.4
14	Jul-16	32.1
14	Aug-16	32.8
14	Sep-16	33.6
14	Oct-16	39.0
14	Nov-16	53.6
14	Dec-16	52.8
15	Jan-16	50.7
15	Mar-16	47.6
15	Apr-16	41.7
15	May-16	39.2
15	Jul-16	32.3
15	Aug-16	31.1
15	Sep-16	36.5

Site Id	MonthYear	NO ₂ Conc ug
15	Oct-16	37.8
15	Nov-16	47.6
15	Dec-16	51.8
16	Jan-16	48.0
16	Mar-16	50.3
16	Apr-16	39.4
16	May-16	47.0
16	Jun-16	32.4
16	Jul-16	27.3
16	Aug-16	29.2
16	Sep-16	33.6
16	Oct-16	38.8
16	Nov-16	47.4
16	Dec-16	45.5
17	Jan-16	50.9
17	Apr-16	53.4
17	May-16	55.7
17	Jun-16	50.7
17	Jul-16	48.2
17	Aug-16	49.0
17	Sep-16	48.0
17	Oct-16	50.3
17	Nov-16	50.7
17	Dec-16	64.9
18	Jan-16	51.6
18	Mar-16	46.5
18	Apr-16	45.3
18	May-16	56.8
18	Jun-16	49.5
18	Jul-16	47.0
18	Aug-16	41.9
18	Sep-16	44.9
18	Oct-16	46.7
18	Nov-16	49.3
18	Dec-16	48.6
19	Jan-16	29.4
19	Mar-16	20.7
19	Apr-16	21.1
19	May-16	24.2
19	Jun-16	18.2
19	Jul-16	13.4
19	Aug-16	15.2
19	Sep-16	17.5
19	Oct-16	42.4

Site Id	MonthYear	NO ₂ Conc ug
19	Nov-16	22.7
19	Dec-16	36.3
20	Jan-16	49.3
20	Mar-16	48.0
20	Apr-16	39.9
20	May-16	45.3
20	Jun-16	44.5
20	Jul-16	42.0
20	Aug-16	39.2
20	Sep-16	42.2
20	Oct-16	36.3
20	Nov-16	51.8
20	Dec-16	56.1
21	Mar-16	59.5
21	Apr-16	45.3
21	May-16	47.0
21	Jun-16	36.1
21	Jul-16	32.4
21	Aug-16	35.1
21	Sep-16	40.3
21	Oct-16	45.7
21	Nov-16	59.1
21	Dec-16	65.9
22	Jan-16	34.9
22	Mar-16	35.5
22	Apr-16	29.2
22	May-16	30.9
22	Jun-16	29.2
22	Jul-16	24.2
22	Aug-16	22.3
22	Sep-16	27.6
22	Oct-16	29.8
22	Nov-16	42.8
22	Dec-16	46.3
23	Jan-16	39.7
23	Mar-16	37.2
23	Apr-16	43.4
23	May-16	46.5
23	Jun-16	36.3
23	Jul-16	41.3
23	Aug-16	40.3
23	Sep-16	41.3
23	Oct-16	38.8
23	Nov-16	50.1

Site Id	MonthYear	NO ₂ Conc ug
23	Dec-16	45.9
24	Jan-16	49.2
24	Mar-16	40.7
24	Apr-16	38.6
24	May-16	42.0
24	Jun-16	36.7
24	Jul-16	34.4
24	Aug-16	35.3
24	Sep-16	32.8
24	Oct-16	35.5
24	Nov-16	40.1
24	Dec-16	49.2
25	Jan-16	34.8
25	Mar-16	31.3
25	May-16	41.1
25	Jun-16	36.5
25	Jul-16	27.8
25	Aug-16	30.7
25	Sep-16	36.9
25	Oct-16	36.7
25	Nov-16	45.5
25	Dec-16	57.6
26	Jan-16	51.8
26	Mar-16	44.9
26	Apr-16	35.7
26	May-16	47.8
26	Jun-16	47.4
26	Jul-16	42.4
26	Aug-16	33.8
26	Sep-16	40.7
26	Oct-16	42.6
26	Nov-16	44.9
26	Dec-16	48.8
27	Jan-16	62.0
27	Mar-16	48.4
27	Apr-16	55.5
27	May-16	55.3
27	Jun-16	39.2
27	Jul-16	46.8
27	Aug-16	45.3
27	Oct-16	50.1
27	Dec-16	63.7
28	Jan-16	42.6
28	Mar-16	38.2

Site Id	MonthYear	NO₂ Conc ug
28	Apr-16	36.3
28	May-16	38.2
28	Jun-16	35.7
28	Jul-16	34.9
28	Aug-16	31.9
28	Sep-16	34.9
28	Oct-16	31.9
28	Nov-16	39.7
28	Dec-16	41.5
33	Jan-16	24.6
33	Mar-16	24.4
33	Apr-16	26.9
33	May-16	26.9
33	Jun-16	21.5
33	Jul-16	15.4
33	Aug-16	16.9
34	Jan-16	50.9
34	Mar-16	55.1
34	Apr-16	53.4
34	May-16	61.1
34	Jun-16	61.8
34	Jul-16	57.8
34	Aug-16	53.6
34	Sep-16	55.3
34	Oct-16	51.3
34	Nov-16	62.0
34	Dec-16	64.9